IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v177y2024i6d10.1007_s10584-024-03739-w.html
   My bibliography  Save this article

Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference

Author

Listed:
  • Yuchuan Lai

    (Tetra Tech)

  • Matteo Pozzi

    (Carnegie Mellon University)

Abstract

Flexible decision-making strategies provide an alternative option for climate adaptation by considering future learning of climate change. A physical-parameter-based state-space model (SSM) with Bayesian inference is developed in this work to investigate reduction of uncertainty from more observations and facilitate flexible adaptation strategies. This SSM method integrates a two-layer, energy-balance model to describe global mean temperature response, models multiple sources of uncertainty such as climate sensitivity and aerosol forcing, and uses the informative priors from processing Global Climate Model simulations. Focusing on global mean temperature anomaly, which has important implications on policies and related impacts, the SSM is assessed by applying it to both historical and pseudo-observations (i.e., model simulations used as observations), assessing the posterior probabilities of physical parameters, and evaluating reduction of projection uncertainty. Some limitations of the method are observed, such as the sensitivity related to the adopted forcing time series. Comparing the end-of-the-century projections of global mean temperature sequentially made at year 2020, 2050, and 2080 using pseudo-observations, the reduction of uncertainty from the SSM is evident: the range of 95% prediction intervals on average decreases from 1.9°C in 2020 to 1.0°C in 2050, and to 0.6°C in 2080 under the Shared Socioeconomic Pathway (SSP) 2–4.5 (or from 2.7°C, to 1.2°C and to 0.7°C under SSP5-8.5). These results illustrate how the SSM framework provides probabilistic projections of climate change that can be sequentially updated with more observations, and this process can facilitate flexible adaptation strategies.

Suggested Citation

  • Yuchuan Lai & Matteo Pozzi, 2024. "Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference," Climatic Change, Springer, vol. 177(6), pages 1-22, June.
  • Handle: RePEc:spr:climat:v:177:y:2024:i:6:d:10.1007_s10584-024-03739-w
    DOI: 10.1007/s10584-024-03739-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-024-03739-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-024-03739-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Richardson & Kevin Cowtan & Ed Hawkins & Martin B. Stolpe, 2016. "Reconciled climate response estimates from climate models and the energy budget of Earth," Nature Climate Change, Nature, vol. 6(10), pages 931-935, October.
    2. Veronika Eyring & Peter M. Cox & Gregory M. Flato & Peter J. Gleckler & Gab Abramowitz & Peter Caldwell & William D. Collins & Bettina K. Gier & Alex D. Hall & Forrest M. Hoffman & George C. Hurtt & A, 2019. "Taking climate model evaluation to the next level," Nature Climate Change, Nature, vol. 9(2), pages 102-110, February.
    3. Claudia Tebaldi & Bruno Sansó, 2009. "Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 83-106, January.
    4. Meinrat O. Andreae & Chris D. Jones & Peter M. Cox, 2005. "Strong present-day aerosol cooling implies a hot future," Nature, Nature, vol. 435(7046), pages 1187-1190, June.
    5. Claudia Tebaldi & Julie Arblaster, 2014. "Pattern scaling: Its strengths and limitations, and an update on the latest model simulations," Climatic Change, Springer, vol. 122(3), pages 459-471, February.
    6. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    7. Lauren M. Cook & Seth McGinnis & Constantine Samaras, 2020. "The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change," Climatic Change, Springer, vol. 159(2), pages 289-308, March.
    8. Graeme Guthrie, 2019. "Real options analysis of climate-change adaptation: investment flexibility and extreme weather events," Climatic Change, Springer, vol. 156(1), pages 231-253, September.
    9. N. W. Arnell & J. A. Lowe & A. J. Challinor & T. J. Osborn, 2019. "Global and regional impacts of climate change at different levels of global temperature increase," Climatic Change, Springer, vol. 155(3), pages 377-391, August.
    10. Sarah Fletcher & Megan Lickley & Kenneth Strzepek, 2019. "Learning about climate change uncertainty enables flexible water infrastructure planning," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    11. Reto Knutti & Jan Sedláček, 2013. "Robustness and uncertainties in the new CMIP5 climate model projections," Nature Climate Change, Nature, vol. 3(4), pages 369-373, April.
    12. Yi He & Desmond Manful & Rachel Warren & Nicole Forstenhäusler & Timothy J. Osborn & Jeff Price & Rhosanna Jenkins & Craig Wallace & Dai Yamazaki, 2022. "Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    3. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    4. Magnus, Jan R. & Melenberg, Bertrand & Muris, Chris, 2011. "Global Warming and Local Dimming: The Statistical Evidence," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 452-464.
    5. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    6. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    7. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    8. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    9. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    10. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    11. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    12. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    13. Peysakhovich, Alexander & Plagborg-Møller, Mikkel, 2012. "A note on proper scoring rules and risk aversion," Economics Letters, Elsevier, vol. 117(1), pages 357-361.
    14. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.
    15. Remy Elbez & Jeff Folz & Alan McLean & Hernan Roca & Joseph M Labuz & Kenneth J Pienta & Shuichi Takayama & Raoul Kopelman, 2021. "Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    16. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2020. "Large Time-Varying Volatility Models for Electricity Prices," Working Papers No 05/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    17. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    18. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    19. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    20. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:177:y:2024:i:6:d:10.1007_s10584-024-03739-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.