IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v222y2019icp21-29.html
   My bibliography  Save this article

Controlled drainage and crop production in a long-term experiment in North-Eastern Italy

Author

Listed:
  • Tolomio, Massimo
  • Borin, Maurizio

Abstract

Crop productivity under controlled drainage was studied in long-term field experiment with shallow fluctuating water table in North-Eastern Italy. Fourteen years of hydrological and yield data, including winter wheat, sugarbeet, soybean and maize, were collected over two monitoring periods (1995–2002 and 2006–2013). Controlled drainage (CD) and free drainage (FD) were tested in combination with open ditches (O) and subsurface pipes (P) systems. CD reduced outflow waters by 69%, respect to FD. Wheat produced on average 4.9 t ha−1. P system was more productive (up to 14.2%) in drier years characterized by sparse and more intense spring rainfalls, due to reduced runoff and increased infiltration. O system was more productive (up to 27.9%) in wet years with frequent rainfalls after sowing, as water was removed faster from soil surface avoiding waterlogging. Soybean produced on average 3.2 t ha−1, with higher yield (5.7% more) in P, probably due to better and more uniform topsoil moisture conditions. Sugarbeet sucrose production showed no univocal response to CD, as a great variety of factors were involved in determining root growth and sucrose concentration. Maize yield had great variability among the years, depending on weather. However, the best results were always obtained with CD (up to 14.5 t ha−1 of grain), showing a definite increase in productivity (on average, with CD grain maize produced 27.3% more, and silage maize 4.0% more). The benefits of CD on maize yield were more pronounced in years with wet springs followed by summer droughts. Subirrigation in CD helped to achieve higher yields when soil moisture content was declining due to prolonged dry periods.

Suggested Citation

  • Tolomio, Massimo & Borin, Maurizio, 2019. "Controlled drainage and crop production in a long-term experiment in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 21-29.
  • Handle: RePEc:eee:agiwat:v:222:y:2019:i:c:p:21-29
    DOI: 10.1016/j.agwat.2019.05.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418314367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.05.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satchithanantham, S. & Krahn, V. & Sri Ranjan, R. & Sager, S., 2014. "Shallow groundwater uptake and irrigation water redistribution within the potato root zone," Agricultural Water Management, Elsevier, vol. 132(C), pages 101-110.
    2. Wesstrom, Ingrid & Messing, Ingmar & Linner, Harry & Lindstrom, Jan, 2001. "Controlled drainage -- effects on drain outflow and water quality," Agricultural Water Management, Elsevier, vol. 47(2), pages 85-100, March.
    3. Berti, Antonio & Tardivo, Gianmarco & Chiaudani, Alessandro & Rech, Francesco & Borin, Maurizio, 2014. "Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy," Agricultural Water Management, Elsevier, vol. 140(C), pages 20-25.
    4. Fabeiro, C. & Martin de Santa Olalla, F. & Lopez, R. & Dominguez, A., 2003. "Production and quality of the sugar beet (Beta vulgaris L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 62(3), pages 215-227, October.
    5. Tolomio, Massimo & Borin, Maurizio, 2018. "Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 201(C), pages 1-10.
    6. Bonaiti, Gabriele & Borin, Maurizio, 2010. "Efficiency of controlled drainage and subirrigation in reducing nitrogen losses from agricultural fields," Agricultural Water Management, Elsevier, vol. 98(2), pages 343-352, December.
    7. Wesstrom, Ingrid & Messing, Ingmar, 2007. "Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops," Agricultural Water Management, Elsevier, vol. 87(3), pages 229-240, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Shen & Pingjin Jiao & Hongwei Yuan & Hui Su, 2022. "Effects of Flooding Duration and Growing Stage on Soybean Growth Based on a Multi-Year Experiment," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    2. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tolomio, Massimo & Borin, Maurizio, 2018. "Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 201(C), pages 1-10.
    2. Wang, Zhiyu & Shao, Guangcheng & Lu, Jia & Zhang, Kun & Gao, Yang & Ding, Jihui, 2020. "Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 239(C).
    3. King, K.W. & Hanrahan, B.R. & Stinner, J. & Shedekar, V.S., 2022. "Field scale discharge and water quality response, to drainage water management," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Bohne, B. & Storchenegger, I.J. & Widmoser, P., 2012. "An easy to use calculation method for weir operations in controlled drainage systems," Agricultural Water Management, Elsevier, vol. 109(C), pages 46-53.
    5. Shokrana, Md Sami Bin & Ghane, Ehsan & Abdalaal, Yousef & Nejadhashemi, A. Pouyan, 2023. "Predicting the effect of weir management on the discharge of a controlled drainage system in a changing climate," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Deichmann, Majken M. & Andersen, Mathias N. & Thomsen, Ingrid K. & Børgesen, Christen D., 2019. "Impacts of controlled drainage during winter on the physiology and yield of winter wheat in Denmark," Agricultural Water Management, Elsevier, vol. 216(C), pages 118-126.
    7. Lavaire, Tito & Gentry, Lowell E. & David, Mark B. & Cooke, Richard A., 2017. "Fate of water and nitrate using drainage water management on tile systems in east-central Illinois," Agricultural Water Management, Elsevier, vol. 191(C), pages 218-228.
    8. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    9. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    10. Kröger, R. & Cooper, C.M. & Moore, M.T., 2008. "A preliminary study of an alternative controlled drainage strategy in surface drainage ditches: Low-grade weirs," Agricultural Water Management, Elsevier, vol. 95(6), pages 678-684, June.
    11. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Drainage water management effects on tile discharge and water quality," Agricultural Water Management, Elsevier, vol. 148(C), pages 43-51.
    12. Littlejohn, K.A. & Poganski, B.H. & Kröger, R. & Ramirez-Avila, J.J., 2014. "Effectiveness of low-grade weirs for nutrient removal in an agricultural landscape in the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 131(C), pages 79-86.
    13. El-Ghannam, Mohamed K. & Aiad, Mahmoud. A. & Abdallah, Ahmed M., 2021. "Irrigation efficiency, drain outflow and yield responses to drain depth in the Nile delta clay soil, Egypt," Agricultural Water Management, Elsevier, vol. 246(C).
    14. Barbara Kęsicka & Rafał Stasik & Michał Kozłowski & Adam Choryński, 2023. "Is Controlled Drainage of Agricultural Land a Common Used Practice?—A Bibliographic Analysis," Land, MDPI, vol. 12(9), pages 1-17, September.
    15. Kiymaz, Sultan & Ertek, Ahmet, 2015. "Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes," Agricultural Water Management, Elsevier, vol. 158(C), pages 225-234.
    16. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    17. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
    18. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    19. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    20. Qadir, M. & Boers, Th. M. & Schubert, S. & Ghafoor, A. & Murtaza, G., 2003. "Agricultural water management in water-starved countries: challenges and opportunities," Agricultural Water Management, Elsevier, vol. 62(3), pages 165-185, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:222:y:2019:i:c:p:21-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.