IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7023-d405483.html
   My bibliography  Save this article

Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India

Author

Listed:
  • Netrananda Sahu

    (Department of Geography, Delhi School of Economics, University of Delhi, Delhi 110007, India
    Disaster Prevention Research Institute, Innovative Disaster Prevention Technology and Policy Research Laboratory, Kyoto University, Gokasho, Uji City, Kyoto 611-0011, Japan)

  • Atul Saini

    (Department of Geography, Delhi School of Economics, University of Delhi, Delhi 110007, India)

  • Swadhin Behera

    (Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Kanagawa 2360001, Japan)

  • Takahiro Sayama

    (Disaster Prevention Research Institute, Innovative Disaster Prevention Technology and Policy Research Laboratory, Kyoto University, Gokasho, Uji City, Kyoto 611-0011, Japan)

  • Sridhara Nayak

    (Disaster Prevention Research Institute, Innovative Disaster Prevention Technology and Policy Research Laboratory, Kyoto University, Gokasho, Uji City, Kyoto 611-0011, Japan)

  • Limonlisa Sahu

    (Department of Environment Science, Fakir Mohan University, Odisha 756020, India)

  • Weili Duan

    (State Key Laboratory of Desert & Oasis Ecology, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830010, China)

  • Ram Avtar

    (Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan)

  • Masafumi Yamada

    (Disaster Prevention Research Institute, Innovative Disaster Prevention Technology and Policy Research Laboratory, Kyoto University, Gokasho, Uji City, Kyoto 611-0011, Japan)

  • R. B. Singh

    (Department of Geography, Delhi School of Economics, University of Delhi, Delhi 110007, India)

  • Kaoru Takara

    (Graduate School of Advanced Integrated Studies (GSAIS) in Human Survivability (Shishu-Kan), Kyoto University, Kyoto 606-8501, Japan)

Abstract

The impact of Indo-Pacific climate variability in the South Asian region is very pronounced and their impact on agriculture is very important for the Indian subcontinent. In this study, rice productivity, climatic factors (Rainfall, Temperature and Soil Moisture) and associated major Indo-Pacific climate indices in Bihar were investigated. Bihar is one of the major rice-producing states of India and the role of climate variability and prevailing climate indices in six events (between 1991–2014) with severer than −10% rice productivity are analyzed. The Five-year moving average, Pearson’s Product Moment Correlation, Partial Correlation, Linear Regression Model, Mann Kendall Test, Sen’s Slope and some other important statistical techniques were used to understand the association between climatic variables and rice productivity. Pearson’s Product Moment Correlation provided an overview of the significant correlation between climate indices and rice productivity. Whereas, Partial Correlation provided the most refined results on it and among all the climate indices, Niño 3, Ocean Niño Index and Southern Oscillation Index are found highly associated with years having severer than −10% decline in rice productivity. Rainfall, temperature and soil moisture anomalies are analyzed to observe the importance of climate factors in rice productivity. Along with the lack of rainfall, lack of soil moisture and persistent above normal temperature (especially maximum temperature) are found to be the important factors in cases of severe loss in rice productivity. Observation of the dynamics of ocean-atmosphere coupling through the composite map shows the Pacific warming signals during the event years. The analysis revealed a negative (positive) correlation of rice productivity with the Niño 3 and Ocean Niño Index (Southern Oscillation Index).

Suggested Citation

  • Netrananda Sahu & Atul Saini & Swadhin Behera & Takahiro Sayama & Sridhara Nayak & Limonlisa Sahu & Weili Duan & Ram Avtar & Masafumi Yamada & R. B. Singh & Kaoru Takara, 2020. "Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7023-:d:405483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. H. Saji & B. N. Goswami & P. N. Vinayachandran & T. Yamagata, 1999. "A dipole mode in the tropical Indian Ocean," Nature, Nature, vol. 401(6751), pages 360-363, September.
    2. Naresh Soora & P. Aggarwal & Rani Saxena & Swaroopa Rani & Surabhi Jain & Nitin Chauhan, 2013. "An assessment of regional vulnerability of rice to climate change in India," Climatic Change, Springer, vol. 118(3), pages 683-699, June.
    3. Carl Pray & Latha Nagarajan & Luping Li & Jikun Huang & Ruifa Hu & K.N. Selvaraj & Ora Napasintuwong & R. Chandra Babu, 2011. "Potential Impact of Biotechnology on Adaption of Agriculture to Climate Change: The Case of Drought Tolerant Rice Breeding in Asia," Sustainability, MDPI, vol. 3(10), pages 1-19, September.
    4. Nayak, Sridhara & Mandal, Manabottam, 2019. "Impact of land use and land cover changes on temperature trends over India," Land Use Policy, Elsevier, vol. 89(C).
    5. Muhammad Aamir Khan & Alishba Tahir & Nabila Khurshid & Muhammad Iftikhar ul Husnain & Mukhtar Ahmed & Houcine Boughanmi, 2020. "Economic Effects of Climate Change-Induced Loss of Agricultural Production by 2050: A Case Study of Pakistan," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    6. Shuai Chen & Xiaoguang Chen & Jintao Xu, 2016. "Assessing the impacts of temperature variations on rice yield in China," Climatic Change, Springer, vol. 138(1), pages 191-205, September.
    7. Andrew G. Turner & H. Annamalai, 2012. "Climate change and the South Asian summer monsoon," Nature Climate Change, Nature, vol. 2(8), pages 587-595, August.
    8. Kindie Tesfaye & Pramod K. Aggarwal & Fasil Mequanint & Paresh B. Shirsath & Clare M. Stirling & Arun Khatri-Chhetri & Dil Bahadur Rahut, 2017. "Climate Variability and Change in Bihar, India: Challenges and Opportunities for Sustainable Crop Production," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    9. David B. Lobell & Graeme L. Hammer & Greg McLean & Carlos Messina & Michael J. Roberts & Wolfram Schlenker, 2013. "The critical role of extreme heat for maize production in the United States," Nature Climate Change, Nature, vol. 3(5), pages 497-501, May.
    10. Weilin Liu & Shengnan Zhu & Yipeng Huang & Yifan Wan & Bin Wu & Lina Liu, 2020. "Spatiotemporal Variations of Drought and Their Teleconnections with Large-Scale Climate Indices over the Poyang Lake Basin, China," Sustainability, MDPI, vol. 12(9), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoud K. Barati & V. S. Manivasagam & Mohammad Reza Nikoo & Pasoubady Saravanane & Alagappan Narayanan & Sudheesh Manalil, 2022. "Rainfall Variability and Rice Sustainability: An Evaluation Study of Two Distinct Rice-Growing Ecosystems," Land, MDPI, vol. 11(8), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenju Cai & Yi Liu & Xiaopei Lin & Ziguang Li & Ying Zhang & David Newth, 2024. "Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Omolola M. Adisa & Joel O. Botai & Abubeker Hassen & Daniel Darkey & Abiodun M. Adeola & Eyob Tesfamariam & Christina M. Botai & Abidemi T. Adisa, 2018. "Variability of Satellite Derived Phenological Parameters across Maize Producing Areas of South Africa," Sustainability, MDPI, vol. 10(9), pages 1-20, August.
    5. Paresh B. Shirsath & Vinay Kumar Sehgal & Pramod K. Aggarwal, 2020. "Downscaling Regional Crop Yields to Local Scale Using Remote Sensing," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    6. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    7. Nisa Anil & M. R. Ramesh Kumar & R. Sajeev & P. K. Saji, 2016. "Role of distinct flavours of IOD events on Indian summer monsoon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1317-1326, June.
    8. Timothy Neal & Michael Keane, 2018. "The Impact of Climate Change on U.S. Agriculture: The Roles of Adaptation Techniques and Emissions Reductions," Discussion Papers 2018-08, School of Economics, The University of New South Wales.
    9. Junhua Yang & Shichang Kang & Deliang Chen & Lin Zhao & Zhenming Ji & Keqin Duan & Haijun Deng & Lekhendra Tripathee & Wentao Du & Mukesh Rai & Fangping Yan & Yuan Li & Robert R. Gillies, 2022. "South Asian black carbon is threatening the water sustainability of the Asian Water Tower," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    11. Deg-Hyo Bae & Toshio Koike & Jehangir Awan & Moon-Hwan Lee & Kyung-Hwan Sohn, 2015. "Climate Change Impact Assessment on Water Resources and Susceptible Zones Identification in the Asian Monsoon Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5377-5393, November.
    12. Balázs Varga & Zsuzsanna Farkas & Emese Varga-László & Gyula Vida & Ottó Veisz, 2022. "Elevated Atmospheric CO 2 Concentration Influences the Rooting Habits of Winter-Wheat ( Triticum aestivum L.) Varieties," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    13. Shekhar, Ankit & Shapiro, Charles A., 2022. "Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska," Agricultural Systems, Elsevier, vol. 198(C).
    14. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    15. Kamal Kumar Murari & Sandeep Mahato & T. Jayaraman & Madhura Swaminathan, 2018. "Extreme Temperatures and Crop Yields in Karnataka, India," Journal, Review of Agrarian Studies, vol. 8(2), pages 92-114, July-Dece.
    16. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    17. Singh, Amarendra Pratap & Narayanan, Krishnan, 2016. "How can weather affect crop area diversity? Panel data evidence from Andhra Pradesh, a rice growing state of India," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 118(2), pages 1-10, August.
    18. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    19. Buddhika Patalee & Glynn T. Tonsor, 2021. "Weather effects on U.S. cow‐calf production: A long‐term panel analysis," Agribusiness, John Wiley & Sons, Ltd., vol. 37(4), pages 838-857, October.
    20. Song, Jingyu & Delgado, Michael & Preckel, Paul & Villoria, Nelson, 2016. "Pixel Level Cropland Allocation and Marginal Impacts of Biophysical Factors," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235327, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7023-:d:405483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.