IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35128-1.html
   My bibliography  Save this article

South Asian black carbon is threatening the water sustainability of the Asian Water Tower

Author

Listed:
  • Junhua Yang

    (Chinese Academy of Sciences)

  • Shichang Kang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Deliang Chen

    (University of Gothenburg)

  • Lin Zhao

    (Chinese Academy of Sciences)

  • Zhenming Ji

    (Sun Yat-sen University)

  • Keqin Duan

    (Shaanxi Normal University)

  • Haijun Deng

    (Fujian Normal University)

  • Lekhendra Tripathee

    (Chinese Academy of Sciences)

  • Wentao Du

    (Chinese Academy of Sciences)

  • Mukesh Rai

    (Chinese Academy of Sciences)

  • Fangping Yan

    (Chinese Academy of Sciences)

  • Yuan Li

    (Chinese Academy of Sciences)

  • Robert R. Gillies

    (Utah State University
    Utah State University)

Abstract

Long-range transport of black carbon from South Asia to the Tibetan plateau and its deposition on glaciers directly enhances glacier melt. Here we find South Asian black carbon also has an indirect effect on the plateau’s glaciers shrinkage by acting to reduce the water supply over the southern Tibetan plateau. Black carbon enhances vertical convection and cloud condensation, which results in water vapor depletion over the Indian subcontinent that is the main moisture flux source for the southern Tibetan plateau. Increasing concentrations of black carbon causes a decrease in summer precipitation over the southern Tibetan plateau, resulting in 11.0% glacier deficit mass balance on average from 2007 to 2016; this loss rises to 22.1% in the Himalayas. The direct (accelerated melt) and indirect (mass supply decrease) effects of black carbon are driving the glacial mass decline of the so-called “Asian Water Tower”.

Suggested Citation

  • Junhua Yang & Shichang Kang & Deliang Chen & Lin Zhao & Zhenming Ji & Keqin Duan & Haijun Deng & Lekhendra Tripathee & Wentao Du & Mukesh Rai & Fangping Yan & Yuan Li & Robert R. Gillies, 2022. "South Asian black carbon is threatening the water sustainability of the Asian Water Tower," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35128-1
    DOI: 10.1038/s41467-022-35128-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35128-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35128-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tandong Yao & Lonnie Thompson & Wei Yang & Wusheng Yu & Yang Gao & Xuejun Guo & Xiaoxin Yang & Keqin Duan & Huabiao Zhao & Baiqing Xu & Jiancheng Pu & Anxin Lu & Yang Xiang & Dambaru B. Kattel & Danie, 2012. "Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings," Nature Climate Change, Nature, vol. 2(9), pages 663-667, September.
    2. Andrew G. Turner & H. Annamalai, 2012. "Climate change and the South Asian summer monsoon," Nature Climate Change, Nature, vol. 2(8), pages 587-595, August.
    3. Wenhao Dong & Yanluan Lin & Jonathon S. Wright & Yi Ming & Yuanyu Xie & Bin Wang & Yong Luo & Wenyu Huang & Jianbin Huang & Lei Wang & Lide Tian & Yiran Peng & Fanghua Xu, 2016. "Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    4. Deepti Singh & Michael Tsiang & Bala Rajaratnam & Noah S. Diffenbaugh, 2014. "Observed changes in extreme wet and dry spells during the South Asian summer monsoon season," Nature Climate Change, Nature, vol. 4(6), pages 456-461, June.
    5. Jian Cao & Haikun Zhao & Bin Wang & Liguang Wu, 2021. "Hemisphere-asymmetric tropical cyclones response to anthropogenic aerosol forcing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Karin Barrueto & Juerg Merz & Nicole Clot & Thomas Hammer, 2017. "Climate Changes and Their Impact on Agricultural Market Systems: Examples from Nepal," Sustainability, MDPI, vol. 9(12), pages 1-16, November.
    2. Mukherjee, Manisha, 2022. "Climate change and migration: Reviewing the role of access to agricultural adaptation measures," MERIT Working Papers 2022-039, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Singh, Amarendra Pratap & Narayanan, Krishnan, 2016. "How can weather affect crop area diversity? Panel data evidence from Andhra Pradesh, a rice growing state of India," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 118(2), pages 1-10, August.
    5. Manish Mehta & Vinit Kumar & Pankaj Kunmar & Kalachand Sain, 2023. "Response of the Thick and Thin Debris-Covered Glaciers between 1971 and 2019 in Ladakh Himalaya, India—A Case Study from Pensilungpa and Durung-Drung Glaciers," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    6. Juliana Freitas Santos & Udo Schickhoff & Shabeh ul Hasson & Jürgen Böhner, 2023. "Biogeophysical Effects of Land-Use and Land-Cover Changes in South Asia: An Analysis of CMIP6 Models," Land, MDPI, vol. 12(4), pages 1-25, April.
    7. Mark Rosenzweig & christopher Udry, 2013. "Forecasting Profitability," Working Papers 1029, Economic Growth Center, Yale University.
    8. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    9. Ajay Gajanan Bhave & Neha Mittal & Ashok Mishra & Narendra Singh Raghuwanshi, 2016. "Integrated Assessment of no-Regret Climate Change Adaptation Options for Reservoir Catchment and Command Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1001-1018, February.
    10. Ling-en Wang & Yuxi Zeng & Linsheng Zhong, 2017. "Impact of Climate Change on Tourism on the Qinghai-Tibetan Plateau: Research Based on a Literature Review," Sustainability, MDPI, vol. 9(9), pages 1-14, August.
    11. Md. Nazir Hossain & Swapna Chowdhury & Shitangsu Kumar Paul, 2016. "Farmer-level adaptation to climate change and agricultural drought: empirical evidences from the Barind region of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1007-1026, September.
    12. Timothée Demont, 2020. "Coping with shocks: the impact of Self-Help Groups on migration and food security," AMSE Working Papers 2016, Aix-Marseille School of Economics, France.
    13. Yaqun Liu & Changhe Lu, 2021. "Quantifying Grass Coverage Trends to Identify the Hot Plots of Grassland Degradation in the Tibetan Plateau during 2000–2019," IJERPH, MDPI, vol. 18(2), pages 1-18, January.
    14. Tong Cui & Yukun Li & Long Yang & Yi Nan & Kunbiao Li & Mahmut Tudaji & Hongchang Hu & Di Long & Muhammad Shahid & Ammara Mubeen & Zhihua He & Bin Yong & Hui Lu & Chao Li & Guangheng Ni & Chunhong Hu , 2023. "Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Tuantuan Zhang & Xingwen Jiang & Song Yang & Junwen Chen & Zhenning Li, 2022. "A predictable prospect of the South Asian summer monsoon," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    17. Netrananda Sahu & Atul Saini & Swadhin Behera & Takahiro Sayama & Sridhara Nayak & Limonlisa Sahu & Weili Duan & Ram Avtar & Masafumi Yamada & R. B. Singh & Kaoru Takara, 2020. "Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    18. Saha, Moumita & Santara, Anirban & Mitra, Pabitra & Chakraborty, Arun & Nanjundiah, Ravi S., 2021. "Prediction of the Indian summer monsoon using a stacked autoencoder and ensemble regression model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 58-71.
    19. Sajjad Ali & Liu Ying & Tariq Shah & Azam Tariq & Abbas Ali Chandio & Ihsan Ali, 2019. "Analysis of the Nexus of CO 2 Emissions, Economic Growth, Land under Cereal Crops and Agriculture Value-Added in Pakistan Using an ARDL Approach," Energies, MDPI, vol. 12(23), pages 1-18, December.
    20. McMahan Christopher & Bridges William & Joyner Chase & Lund Robert & Baurley James & Kacamarga Muhamad Fitra & Pardamean Carissa & Pardamean Bens, 2017. "A Bayesian hierarchical model for identifying significant polygenic effects while controlling for confounding and repeated measures," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 407-419, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35128-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.