IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5569-d555908.html
   My bibliography  Save this article

Effect of Intensifier Additives on the Performance of Butanolic Extract of Date Palm Leaves against the Corrosion of API 5L X60 Carbon Steel in 15 wt.% HCl Solution

Author

Listed:
  • Saviour A. Umoren

    (Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Moses M. Solomon

    (Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Ime B. Obot

    (Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Rami K. Suleiman

    (Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

Abstract

The quest to replace toxic chemicals in the nearest future is revolutionizing the corrosion inhibitor research world by turning its attention to plant biomaterials. Herein, we report the corrosion inhibiting potential of butanolic extract of date palm leaves (BUT) on the corrosion of API 5L X60 carbon steel in 15 wt.% HCl solution. The mass loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), linear polarization (LPR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), and atomic force microscopy (AFM) techniques were employed in the investigation. We also report the effect of intensifier additives, namely formic acid (FA), potassium iodide (KI), and zinc nitrate (Zn(NO 3 ) 2 ) as well as temperature on the corrosion inhibiting performance of BUT. BUT exhibits inhibiting ability but the extent of inhibition is dependent on concentration, temperature, and intensifiers’ concentration. At 25 °C, 200 mg/L BUT and 700 mg/L BUT protected the carbon steel surface by 50% and 88%, respectively. The addition of 3 mM FA and 5 mM KI to 200 mg/L upgraded the extract performance to 97% and 95%, respectively. Zn(NO 3 ) 2 performs poorly as an intensifier for BUT under acidizing conditions. The adsorption of BUT + FA and BUT + KI is synergistic in nature whereas that of BUT + Zn(NO 3 ) 2 drifts towards antagonistic behavior according to the calculated synergism parameter. Increase in the system temperature resulted in a slight decline in the inhibition efficiency of BUT + FA and BUT + KI but with efficiency of above 85% achieved at 60 °C. The SEM and AFM results corroborate results from the electrochemical techniques.

Suggested Citation

  • Saviour A. Umoren & Moses M. Solomon & Ime B. Obot & Rami K. Suleiman, 2021. "Effect of Intensifier Additives on the Performance of Butanolic Extract of Date Palm Leaves against the Corrosion of API 5L X60 Carbon Steel in 15 wt.% HCl Solution," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5569-:d:555908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramadan A. Nasser & Mohamed Z. M. Salem & Salim Hiziroglu & Hamad A. Al-Mefarrej & Ahmed S. Mohareb & Manawwer Alam & Ibrahim M. Aref, 2016. "Chemical Analysis of Different Parts of Date Palm ( Phoenix dactylifera L.) Using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production," Energies, MDPI, vol. 9(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peace S. Umoren & Doga Kavaz & Saviour A. Umoren, 2022. "Corrosion Inhibition Evaluation of Chitosan–CuO Nanocomposite for Carbon Steel in 5% HCl Solution and Effect of KI Addition," Sustainability, MDPI, vol. 14(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Haeldermans & Jeamichel Puente Torres & Willem Vercruysse & Robert Carleer & Pieter Samyn & Dries Vandamme & Jan Yperman & Ann Cuypers & Kenny Vanreppelen & Sonja Schreurs, 2023. "An Experimentally Validated Selection Protocol for Biochar as a Sustainable Component in Green Roofs," Waste, MDPI, vol. 1(1), pages 1-19, January.
    2. Makkawi, Yassir & El Sayed, Yehya & Salih, Mubarak & Nancarrow, Paul & Banks, Scott & Bridgwater, Tony, 2019. "Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 719-730.
    3. Elnajjar, E. & Al-Zuhair, S. & Hasan, S. & Almardeai, S. & Al Omari, S.A.B. & Hilal-Alnaqbi, A., 2020. "Morphology characterization and chemical composition of United Arab Emirates date seeds and their potential for energy production," Energy, Elsevier, vol. 213(C).
    4. Shokrollahi, Simin & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "Efficient bioenergy recovery from different date palm industrial wastes," Energy, Elsevier, vol. 272(C).
    5. Fahad Alkoaik & Abdulelah Al-Faraj & Ibrahim Al-Helal & Ronnel Fulleros & Mansour Ibrahim & Ahmed M. Abdel-Ghany, 2019. "Toward Sustainability in Rural Areas: Composting Palm Tree Residues in Rotating Bioreactors," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    6. Musa Adamu & Fayez Alanazi & Yasser E. Ibrahim & Hani Alanazi & Veerendrakumar C. Khed, 2022. "A Comprehensive Review on Sustainable Natural Fiber in Cementitious Composites: The Date Palm Fiber Case," Sustainability, MDPI, vol. 14(11), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5569-:d:555908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.