IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1410-d211666.html
   My bibliography  Save this article

Can We Detect the Brownness or Greenness of the Congo Rainforest Using Satellite-Derived Surface Albedo? A Study on the Role of Aerosol Uncertainties

Author

Listed:
  • Suman Moparthy

    (CNRM, Université de Toulouse, Météo-France, CNRS. 42 Avenue Gaspard Coriolis, 31057 Toulouse, France)

  • Dominique Carrer

    (CNRM, Université de Toulouse, Météo-France, CNRS. 42 Avenue Gaspard Coriolis, 31057 Toulouse, France)

  • Xavier Ceamanos

    (CNRM, Université de Toulouse, Météo-France, CNRS. 42 Avenue Gaspard Coriolis, 31057 Toulouse, France)

Abstract

The ability of spatial remote sensing in the visible domain to properly detect the slow transitions in the Earth’s vegetation is often a subject of debate. The reason behind this is that the satellite products often used to calculate vegetation indices such as surface albedo or reflectance, are not always correctly decontaminated from atmospheric effects. In view of the observed decline in vegetation over the Congo during the last decade, this study investigates how effectively satellite-derived variables can contribute to the answering of this question. In this study, we use two satellite-derived surface albedo products, three satellite-derived aerosol optical depth (AOD) products, two model-derived AOD products, and synthetic observations from radiative transfer simulations. The study discusses the important discrepancies (of up to 70%) found between these satellite surface albedo products in the visible domain over this region. We conclude therefore that the analysis of trends in vegetation properties based on satellite observations in the visible domain such as NDVI (normalized difference vegetation index), calculated from reflectance or albedo variables, is still quite questionable over tropical forest regions such as the Congo. Moreover, this study demonstrates that there is a significant increase (of up to 14%) in total aerosols within the last decade over the Congo. We note that if these changes in aerosol loads are not correctly taken into account in the retrieval of surface albedo, a greenness change of the surface properties (decrease of visible albedo) of around 8% could be artificially detected. Finally, the study also shows that neglecting strong aerosol emissions due to volcano eruptions could lead to an artificial increase of greenness over the Congo of more than 25% in the year of the eruptions and up to 16% during the 2–3 years that follow.

Suggested Citation

  • Suman Moparthy & Dominique Carrer & Xavier Ceamanos, 2019. "Can We Detect the Brownness or Greenness of the Congo Rainforest Using Satellite-Derived Surface Albedo? A Study on the Role of Aerosol Uncertainties," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1410-:d:211666
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Øivind Hodnebrog & Gunnar Myhre & Piers M. Forster & Jana Sillmann & Bjørn H. Samset, 2016. "Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    2. Yoram J. Kaufman & Didier Tanré & Olivier Boucher, 2002. "A satellite view of aerosols in the climate system," Nature, Nature, vol. 419(6903), pages 215-223, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neha Shaw & A. K. Gorai, 2020. "Study of aerosol optical depth using satellite data (MODIS Aqua) over Indian Territory and its relation to particulate matter concentration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 265-279, January.
    2. Tianhao Zhang & Gang Liu & Zhongmin Zhu & Wei Gong & Yuxi Ji & Yusi Huang, 2016. "Real-Time Estimation of Satellite-Derived PM 2.5 Based on a Semi-Physical Geographically Weighted Regression Model," IJERPH, MDPI, vol. 13(10), pages 1-13, September.
    3. Tianhao Zhang & Wei Gong & Wei Wang & Yuxi Ji & Zhongmin Zhu & Yusi Huang, 2016. "Ground Level PM 2.5 Estimates over China Using Satellite-Based Geographically Weighted Regression (GWR) Models Are Improved by Including NO 2 and Enhanced Vegetation Index (EVI)," IJERPH, MDPI, vol. 13(12), pages 1-12, December.
    4. Prasad, Abhnil Amtesh & Nishant, Nidhi & Kay, Merlinde, 2022. "Dust cycle and soiling issues affecting solar energy reductions in Australia using multiple datasets," Applied Energy, Elsevier, vol. 310(C).
    5. Yumara Martín-Cruz & Álvaro Gómez-Losada, 2023. "Risk Assessment and Source Apportionment of Metals on Atmospheric Particulate Matter in a Suburban Background Area of Gran Canaria (Spain)," IJERPH, MDPI, vol. 20(10), pages 1-18, May.
    6. Cheng Chen & Oleg Dubovik & Gregory L. Schuster & Mian Chin & Daven K. Henze & Tatyana Lapyonok & Zhengqiang Li & Yevgeny Derimian & Ying Zhang, 2022. "Multi-angular polarimetric remote sensing to pinpoint global aerosol absorption and direct radiative forcing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Brigitte Mueller & Xuebin Zhang, 2016. "Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data," Climatic Change, Springer, vol. 134(1), pages 255-267, January.
    8. Wei Wang & Zengxin Pan & Feiyue Mao & Wei Gong & Longjiao Shen, 2017. "Evaluation of VIIRS Land Aerosol Model Selection with AERONET Measurements," IJERPH, MDPI, vol. 14(9), pages 1-12, September.
    9. B. Padmakumari & A. Jaswal & B. Goswami, 2013. "Decrease in evaporation over the Indian monsoon region: implication on regional hydrological cycle," Climatic Change, Springer, vol. 121(4), pages 787-799, December.
    10. Xiang-Dong Chen & En-Hui Wang & Long-Kun Shan & Shao-Chun Zhang & Ce Feng & Yu Zheng & Yang Dong & Guang-Can Guo & Fang-Wen Sun, 2023. "Quantum enhanced radio detection and ranging with solid spins," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Liang Cheng & Long Li & Longqian Chen & Sai Hu & Lina Yuan & Yunqiang Liu & Yifan Cui & Ting Zhang, 2019. "Spatiotemporal Variability and Influencing Factors of Aerosol Optical Depth over the Pan Yangtze River Delta during the 2014–2017 Period," IJERPH, MDPI, vol. 16(19), pages 1-25, September.
    12. Xiankang Xu & Kaifang Shi & Zhongyu Huang & Jingwei Shen, 2023. "What Factors Dominate the Change of PM 2.5 in the World from 2000 to 2019? A Study from Multi-Source Data," IJERPH, MDPI, vol. 20(3), pages 1-28, January.
    13. Yan Guo & Wei Tang & Guanghua Hou & Fei Pan & Yubo Wang & Wei Wang, 2021. "Research on Precipitation Forecast Based on LSTM–CP Combined Model," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    14. Zhiyuan Fang & Hao Yang & Ye Cao & Kunming Xing & Dong Liu & Ming Zhao & Chenbo Xie, 2021. "Study of Persistent Pollution in Hefei during Winter Revealed by Ground-Based LiDAR and the CALIPSO Satellite," Sustainability, MDPI, vol. 13(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1410-:d:211666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.