IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11596-d660724.html
   My bibliography  Save this article

Research on Precipitation Forecast Based on LSTM–CP Combined Model

Author

Listed:
  • Yan Guo

    (College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China
    Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agricultural University, Ya’an 625000, China)

  • Wei Tang

    (College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China
    Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agricultural University, Ya’an 625000, China)

  • Guanghua Hou

    (College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China)

  • Fei Pan

    (College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China)

  • Yubo Wang

    (College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China)

  • Wei Wang

    (College of Management, Sichuan Agricultural University, Ya’an 625000, China)

Abstract

The tremendous progress made in the field of deep learning allows us to accurately predict precipitation and avoid major and long-term disruptions to the entire socio-economic system caused by floods. This paper presents an LSTM–CP combined model formed by the Long Short-Term Memory (LSTM) network and Chebyshev polynomial (CP) as applied to the precipitation forecast of Yibin City. Firstly, the data are fed into the LSTM network to extract the time-series features. Then, the sequence features obtained are input into the BP (Back Propagation) neural network with CP as the excitation function. Finally, the prediction results are obtained. By theoretical analysis and experimental comparison, the LSTM–CP combined model proposed in this paper has fewer parameters, shorter running time, and relatively smaller prediction error than the LSTM network. Meanwhile, compared with the SVR model, ARIMA model, and MLP model, the prediction accuracy of the LSTM–CP combination model is significantly improved, which can aid relevant departments in making disaster response measures in advance to reduce disaster losses and promote sustainable development by providing them data support.

Suggested Citation

  • Yan Guo & Wei Tang & Guanghua Hou & Fei Pan & Yubo Wang & Wei Wang, 2021. "Research on Precipitation Forecast Based on LSTM–CP Combined Model," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11596-:d:660724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11596/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Øivind Hodnebrog & Gunnar Myhre & Piers M. Forster & Jana Sillmann & Bjørn H. Samset, 2016. "Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    2. Fatemeh Barzegari Banadkooki & Mohammad Ehteram & Ali Najah Ahmed & Chow Ming Fai & Haitham Abdulmohsin Afan & Wani M. Ridwam & Ahmed Sefelnasr & Ahmed El-Shafie, 2019. "Precipitation Forecasting Using Multilayer Neural Network and Support Vector Machine Optimization Based on Flow Regime Algorithm Taking into Account Uncertainties of Soft Computing Models," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    3. Chang, Zihan & Zhang, Yang & Chen, Wenbo, 2019. "Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform," Energy, Elsevier, vol. 187(C).
    4. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    2. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    3. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    4. Fabio Di Nunno & Marco De Matteo & Giovanni Izzo & Francesco Granata, 2023. "A Combined Clustering and Trends Analysis Approach for Characterizing Reference Evapotranspiration in Veneto," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    5. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    6. Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
    7. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    8. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    9. Zhang, Li & Gao, Yan & Zhu, Hongbo & Tao, Li, 2022. "Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach," Energy, Elsevier, vol. 239(PA).
    10. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    11. Rodrigo A. de Marcos & Derek W. Bunn & Antonio Bello & Javier Reneses, 2020. "Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks," Energies, MDPI, vol. 13(20), pages 1-14, October.
    12. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    13. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    14. Stephen Luo Sheng Yong & Jing Lin Ng & Yuk Feng Huang & Chun Kit Ang & Norashikin Ahmad Kamal & Majid Mirzaei & Ali Najah Ahmed, 2024. "Enhanced Daily Reference Evapotranspiration Estimation Using Optimized Hybrid Support Vector Regression Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4213-4241, September.
    15. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    16. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yao, Baofeng & Wang, Yan, 2022. "An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)," Energy, Elsevier, vol. 254(PB).
    17. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    18. Fabio Di Nunno & Francesco Granata & Quoc Bao Pham & Giovanni de Marinis, 2022. "Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    19. Siti Nurfadilah Binti Jaini & Deug-Woo Lee & Seung-Jun Lee & Mi-Ru Kim & Gil-Ho Son, 2021. "Indirect tool monitoring in drilling based on gap sensor signal and multilayer perceptron feed forward neural network," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1605-1619, August.
    20. Muhammad Waseem & Ijaz Ahmad & Ahmad Mujtaba & Muhammad Tayyab & Chen Si & Haishen Lü & Xiaohua Dong, 2020. "Spatiotemporal Dynamics of Precipitation in Southwest Arid-Agriculture Zones of Pakistan," Sustainability, MDPI, vol. 12(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11596-:d:660724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.