IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3720-d246490.html
   My bibliography  Save this article

Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China

Author

Listed:
  • Wei Zhou

    (Energy Policy Research Group, University of Cambridge, Cambridge CB2 1AG, UK
    Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK)

  • Alice Moncaster

    (Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
    School of Engineering and Innovation, Open University, Milton Keynes MK7 6AA, UK)

  • David M Reiner

    (Energy Policy Research Group, University of Cambridge, Cambridge CB2 1AG, UK)

  • Peter Guthrie

    (Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK)

Abstract

Building lifetime and stock turnover are both key determinants in modelling building energy and carbon. However in China, aside from anecdotal claims that urban residential buildings are generally short-lived, there are no recent official statistics, and empirical data are extremely limited. We present a system dynamics model where survival analysis is used to characterise the dynamic interplay between new construction, aging, and demolition of residential buildings in urban China. The uncertainties associated with building lifetime were represented using a Weibull distribution, whose shape and scale parameters were calibrated based on official statistics on floor area up to 2006. The calibrated Weibull lifetime distribution allowed us to estimate the dynamic stock turnover of Chinese urban residential buildings for 2007 to 2017. We find that the average lifetime of urban residential buildings was around 34 years, and the overall residential stock size reached 23.7 billion m 2 in 2017. The resultant age-specific sub-stocks provide a baseline for the overall stock, which—along with the calibrated Weibull lifetime distribution—can be used in further modelling and for analysis of policies to reduce the whole-life embodied and operational energy and CO 2 emissions in Chinese residential buildings.

Suggested Citation

  • Wei Zhou & Alice Moncaster & David M Reiner & Peter Guthrie, 2019. "Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3720-:d:246490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3720/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mingming Hu & Ester Van Der Voet & Gjalt Huppes, 2010. "Dynamic Material Flow Analysis for Strategic Construction and Demolition Waste Management in Beijing," Journal of Industrial Ecology, Yale University, vol. 14(3), pages 440-456, June.
    2. Zhou, Nan & Fridley, David & Khanna, Nina Zheng & Ke, Jing & McNeil, Michael & Levine, Mark, 2013. "China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model," Energy Policy, Elsevier, vol. 53(C), pages 51-62.
    3. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    4. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    5. Hong, Lixuan & Zhou, Nan & Feng, Wei & Khanna, Nina & Fridley, David & Zhao, Yongqiang & Sandholt, Kaare, 2016. "Building stock dynamics and its impacts on materials and energy demand in China," Energy Policy, Elsevier, vol. 94(C), pages 47-55.
    6. McNeil, Michael A. & Feng, Wei & de la Rue du Can, Stephane & Khanna, Nina Zheng & Ke, Jing & Zhou, Nan, 2016. "Energy efficiency outlook in China’s urban buildings sector through 2030," Energy Policy, Elsevier, vol. 97(C), pages 532-539.
    7. Brett W. Fawley & Yi Wen, 2013. "The great Chinese housing boom," Economic Synopses, Federal Reserve Bank of St. Louis.
    8. Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
    9. Pomponi, Francesco & Moncaster, Alice, 2018. "Scrutinising embodied carbon in buildings: The next performance gap made manifest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2431-2442.
    10. Yang, Tao & Pan, Yiqun & Yang, Yikun & Lin, Meishun & Qin, Bingyue & Xu, Peng & Huang, Zhizhong, 2017. "CO2 emissions in China's building sector through 2050: A scenario analysis based on a bottom-up model," Energy, Elsevier, vol. 128(C), pages 208-223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, W. & O’Neill, E. & Moncaster, A. & Reiner, D. & Guthrie, P., 2019. "Applying Bayesian Model Averaging to Characterise Urban Residential Stock Turnover Dynamics," Cambridge Working Papers in Economics 1986, Faculty of Economics, University of Cambridge.
    2. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    3. Francesco Pomponi & Bernardino D’Amico, 2020. "Low Energy Architecture and Low Carbon Cities: Exploring Links, Scales, and Environmental Impacts," Sustainability, MDPI, vol. 12(21), pages 1-6, November.
    4. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Zhou, Wei & O'Neill, Eoghan & Moncaster, Alice & Reiner, David M. & Guthrie, Peter, 2020. "Forecasting urban residential stock turnover dynamics using system dynamics and Bayesian model averaging," Applied Energy, Elsevier, vol. 275(C).
    6. Danyang Cheng & David M. Reiner & Fan Yang & Can Cui & Jing Meng & Yuli Shan & Yunhui Liu & Shu Tao & Dabo Guan, 2023. "Projecting future carbon emissions from cement production in developing countries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Carine Lausselet & Johana Paola Forero Urrego & Eirik Resch & Helge Brattebø, 2021. "Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 419-434, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
    2. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    3. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    5. Linwei Pan & Minglei Zhu & Ningning Lang & Tengfei Huo, 2020. "What Is the Amount of China’s Building Floor Space from 1996 to 2014?," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
    6. Huo, Tengfei & Xu, Linbo & Liu, Bingsheng & Cai, Weiguang & Feng, Wei, 2022. "China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model," Applied Energy, Elsevier, vol. 325(C).
    7. Zhou, Wei & O'Neill, Eoghan & Moncaster, Alice & Reiner, David M. & Guthrie, Peter, 2020. "Forecasting urban residential stock turnover dynamics using system dynamics and Bayesian model averaging," Applied Energy, Elsevier, vol. 275(C).
    8. Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).
    9. Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
    10. Hong, Lixuan & Zhou, Nan & Feng, Wei & Khanna, Nina & Fridley, David & Zhao, Yongqiang & Sandholt, Kaare, 2016. "Building stock dynamics and its impacts on materials and energy demand in China," Energy Policy, Elsevier, vol. 94(C), pages 47-55.
    11. Xu, Guangyue & Wang, Weimin, 2020. "China’s energy consumption in construction and building sectors: An outlook to 2100," Energy, Elsevier, vol. 195(C).
    12. Cao, Zhi & Liu, Gang & Duan, Huabo & Xi, Fengming & Liu, Guiwen & Yang, Wei, 2019. "Unravelling the mystery of Chinese building lifetime: A calibration and verification based on dynamic material flow analysis," Applied Energy, Elsevier, vol. 238(C), pages 442-452.
    13. Khanna, Nina & Fridley, David & Zhou, Nan & Karali, Nihan & Zhang, Jingjing & Feng, Wei, 2019. "Energy and CO2 implications of decarbonization strategies for China beyond efficiency: Modeling 2050 maximum renewable resources and accelerated electrification impacts," Applied Energy, Elsevier, vol. 242(C), pages 12-26.
    14. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    15. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    17. Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
    18. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    19. Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
    20. Pan, Xunzhang & Chen, Wenying & Zhou, Sheng & Wang, Lining & Dai, Jiaquan & Zhang, Qi & Zheng, Xinzhu & Wang, Hailin, 2020. "Implications of near-term mitigation on China's long-term energy transitions for aligning with the Paris goals," Energy Economics, Elsevier, vol. 90(C).

    More about this item

    Keywords

    building stock; survival analysis; lifetime distribution; system dynamics;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3720-:d:246490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.