IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v225y2021ics0360544221004138.html
   My bibliography  Save this article

Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China

Author

Listed:
  • Ma, Sining
  • Guo, Siyue
  • Zheng, Dingqian
  • Chang, Shiyan
  • Zhang, Xiliang

Abstract

China has made a lot of efforts on clean heating in Northern Region of China (NRC). Although there are lots of studies focusing on NRC heating, most of them focus on reducing air pollution, the potential contribution to address climate change and the difference of provinces and urban-rural areas are not fully discussed. Based on the above, this research intends to study NRC’s provincial heating transformation roadmap in urban and rural areas by 2035 with the considerations of both air pollutants and carbon emissions reduction using the China Regional Energy System Model (C-RESM). The results show that the existing clean heating policy can effectively reduce air pollution but CO2 emissions not enough. If the 2 °C temperature rise target is achieved as well, by 2035, the industrial waste heat shall be fully developed in the centralized heating areas and bear 9% of heating area, while the air source heat pumps and biomass heating in the decentralized heating areas, bearing 24% and 26%, respectively. Due to the lock-in effect, coal-fired CHP will continue to be the basic heating load in the urban centralized heating system, with a proportion of around 20% by 2035.

Suggested Citation

  • Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221004138
    DOI: 10.1016/j.energy.2021.120164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221004138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Siano, Pierluigi, 2020. "Optimal generation scheduling of large-scale multi-zone combined heat and power systems," Energy, Elsevier, vol. 210(C).
    2. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    3. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    4. Fan, Maoyong & He, Guojun & Zhou, Maigeng, 2020. "The winter choke: Coal-Fired heating, air pollution, and mortality in China," Journal of Health Economics, Elsevier, vol. 71(C).
    5. Merkel, Erik & Fehrenbach, Daniel & McKenna, Russell & Fichtner, Wolf, 2014. "Modelling decentralised heat supply: An application and methodological extension in TIMES," Energy, Elsevier, vol. 73(C), pages 592-605.
    6. Broad, Oliver & Hawker, Graeme & Dodds, Paul E., 2020. "Decarbonising the UK residential sector: The dependence of national abatement on flexible and local views of the future," Energy Policy, Elsevier, vol. 140(C).
    7. Guo, Siyue & Yan, Da & Hu, Shan & Zhang, Yang, 2021. "Modelling building energy consumption in China under different future scenarios," Energy, Elsevier, vol. 214(C).
    8. Zhang, Yichi & Xia, Jianjun & Fang, Hao & Zuo, Hetao & Jiang, Yi, 2019. "Roadmap towards clean heating in 2035: Case study of inner Mongolia, China," Energy, Elsevier, vol. 189(C).
    9. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    10. Zhou, Xuezhi & Gao, Qing & Chen, Xiangliang & Yan, Yuying & Spitler, Jeffrey D., 2015. "Developmental status and challenges of GWHP and ATES in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 973-985.
    11. Gong, Mei & Werner, Sven, 2015. "An assessment of district heating research in China," Renewable Energy, Elsevier, vol. 84(C), pages 97-105.
    12. Jianxiao Wang & Haiwang Zhong & Zhifang Yang & Mu Wang & Daniel M. Kammen & Zhu Liu & Ziming Ma & Qing Xia & Chongqing Kang, 2020. "Exploring the trade-offs between electric heating policy and carbon mitigation in China," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    13. Li, Pei-Hao & Keppo, Ilkka & Strachan, Neil, 2018. "Incorporating homeowners' preferences of heating technologies in the UK TIMES model," Energy, Elsevier, vol. 148(C), pages 716-727.
    14. Zhao, Jing & Duan, Yaoqi & Liu, Xiaojuan, 2019. "Study on the policy of replacing coal-fired boilers with gas-fired boilers for central heating based on the 3E system and the TOPSIS method: A case in Tianjin, China," Energy, Elsevier, vol. 189(C).
    15. Hast, Aira & Syri, Sanna & Lekavičius, Vidas & Galinis, Arvydas, 2018. "District heating in cities as a part of low-carbon energy system," Energy, Elsevier, vol. 152(C), pages 627-639.
    16. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Lund, Henrik & Zhang, Xiliang, 2015. "Heat roadmap China: New heat strategy to reduce energy consumption towards 2030," Energy, Elsevier, vol. 81(C), pages 274-285.
    18. Zhang, Hongyu & Zhou, Li & Huang, Xiaodan & Zhang, Xiliang, 2019. "Decarbonizing a large City's heating system using heat pumps: A case study of Beijing," Energy, Elsevier, vol. 186(C).
    19. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    20. Qingyou Yan & Chao Qin, 2017. "Environmental and Economic Benefit Analysis of an Integrated Heating System with Geothermal Energy—A Case Study in Xi’an China," Energies, MDPI, vol. 10(12), pages 1-16, December.
    21. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    22. Narula, Kapil & Chambers, Jonathan & Streicher, Kai N. & Patel, Martin K., 2019. "Strategies for decarbonising the Swiss heating system," Energy, Elsevier, vol. 169(C), pages 1119-1131.
    23. Guozhong Zheng & Wentao Bu, 2018. "Review of Heating Methods for Rural Houses in China," Energies, MDPI, vol. 11(12), pages 1-18, December.
    24. Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
    25. Hou, Jianchao & Cao, Mengchao & Liu, Pingkuo, 2018. "Development and utilization of geothermal energy in China: Current practices and future strategies," Renewable Energy, Elsevier, vol. 125(C), pages 401-412.
    26. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Zhaoyingzi & Liu, Haijing & Zhang, Weiwen, 2024. "The effect of information disclosure on low-carbon innovation," Energy, Elsevier, vol. 288(C).
    2. Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Qiuyi Wu, 2023. "Theoretical Evaluation of Photovoltaic Thermal Water Source Heat Pump, Application Potential and Policy Implications: Evidence from Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    4. Bin Liu & Chan Lu & Chun Yi, 2023. "Research on Green and Low-Carbon Rural Development in China: A Scientometric Analysis Using CiteSpace (1979–2021)," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    5. Chang Su & Frauke Urban, 2021. "Carbon Neutral China by 2060: The Role of Clean Heating Systems," Energies, MDPI, vol. 14(22), pages 1-16, November.
    6. Che, Zichang & Sun, Jingchao & Na, Hongming & Yuan, Yuxing & Qiu, Ziyang & Du, Tao, 2023. "A novel method for intelligent heating: On-demand optimized regulation of hydraulic balance for secondary networks," Energy, Elsevier, vol. 282(C).
    7. Ekmekci, Ece & Aydin, Murat & Ozturk, Z. Fatih & Sisman, Altug, 2024. "Very high temperature BTES: A potential for operationally cost-free and emission-free heating," Applied Energy, Elsevier, vol. 360(C).
    8. Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).
    9. Ma, Meiyan & Tang, Xu & Shi, Changning & Wang, Min & Li, Xinying & Luo, Pengfei & Zhang, Baosheng, 2023. "Roadmap towards clean and low-carbon heating to 2060: The case of northern urban region in China," Energy, Elsevier, vol. 284(C).
    10. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    11. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    12. Teng Ma & Silu Zhang & Yilong Xiao & Xiaorui Liu & Minghao Wang & Kai Wu & Guofeng Shen & Chen Huang & Yan Ru Fang & Yang Xie, 2023. "Costs and health benefits of the rural energy transition to carbon neutrality in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    14. Zhang, Zongxi & Zhou, Yuguang & Zhao, Nan & Li, Huan & Tohniyaz, Bahargul & Mperejekumana, Philbert & Hong, Quan & Wu, Rucong & Li, Gang & Sultan, Muhammad & Zayan, Ali Mohammed Ibrahim & Cao, Jinxin , 2021. "Clean heating during winter season in Northern China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Xue, Wenhao & Wang, LiYun & Yang, Zhe & Xiong, Zhenwu & Li, Xinyao & Xu, Qingqing & Cai, Zhaoxin, 2023. "Can clean heating effectively alleviate air pollution: An empirical study based on the plan for cleaner winter heating in northern China," Applied Energy, Elsevier, vol. 351(C).
    16. Zhang, Shaoliang & Liu, Shuli & Shen, Yongliang & Shukla, Ashish & Mazhar, Abdur Rehman & Chen, Tingsen, 2024. "Critical review of solar-assisted air source heat pump in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    17. Lin, Boqiang & Wang, You, 2024. "How does the natural disasters affect urban-rural income gap? Empirical evidence from China," Energy, Elsevier, vol. 295(C).
    18. Bangjun, Wang & Linyu, Cui & Feng, Ji & Yue, Wang, 2023. "Research on club convergence effect and its influencing factors of per capita energy consumption: Evidence from the data of 243 prefecture-level cities in China," Energy, Elsevier, vol. 263(PB).
    19. Fang, Guochang & Chen, Gang & Yang, Kun & Yin, Weijun & Tian, Lixin, 2023. "Can green tax policy promote China's energy transformation?— A nonlinear analysis from production and consumption perspectives," Energy, Elsevier, vol. 269(C).
    20. Yang, Xiaolin & Liu, Zhaoyang & Xia, Jianjun, 2023. "Optimization and analysis of combined heat and water production system based on a coal-fired power plant," Energy, Elsevier, vol. 262(PB).
    21. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    22. Chengcheng Xiong & Mohd Sayuti Hassan, 2022. "Renewable Heat Policy in China: Development, Achievement, and Effectiveness," Sustainability, MDPI, vol. 14(15), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    2. Manz, Pia & Billerbeck, Anna & Kök, Ali & Fallahnejad, Mostafa & Fleiter, Tobias & Kranzl, Lukas & Braungardt, Sibylle & Eichhammer, Wolfgang, 2024. "Spatial analysis of renewable and excess heat potentials for climate-neutral district heating in Europe," Renewable Energy, Elsevier, vol. 224(C).
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Zheng, Xuejing & Sun, Qihang & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & You, Shijun & Zhang, Huan & Shi, Kaiyu, 2021. "Thermo-hydraulic coupled simulation and analysis of a real large-scale complex district heating network in Tianjin," Energy, Elsevier, vol. 236(C).
    5. Guo, Xiaodan & Xiao, Bowen, 2022. "How can pricing strategy for district heating help China realize cleaner residential heating?," Energy Economics, Elsevier, vol. 110(C).
    6. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    7. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    8. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    9. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Hansen, Kasper Klan & Svendsen, Svend, 2022. "Implementation of a strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 251(C).
    10. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
    11. Stef Jacobs & Margot De Pauw & Senne Van Minnebruggen & Sara Ghane & Thomas Huybrechts & Peter Hellinckx & Ivan Verhaert, 2023. "Grouped Charging of Decentralised Storage to Efficiently Control Collective Heating Systems: Limitations and Opportunities," Energies, MDPI, vol. 16(8), pages 1-28, April.
    12. Michael Mans & Tobias Blacha & Thomas Schreiber & Dirk Müller, 2022. "Development and Application of an Open-Source Framework for Automated Thermal Network Generation and Simulations in Modelica," Energies, MDPI, vol. 15(12), pages 1-25, June.
    13. Jie, Pengfei & Zhao, Wanyue & Li, Fating & Wei, Fengjun & Li, Jing, 2020. "Optimizing the pressure drop per unit length of district heating piping networks from an environmental perspective," Energy, Elsevier, vol. 202(C).
    14. Abokersh, Mohamed Hany & Gangwar, Sachin & Spiekman, Marleen & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2021. "Sustainability insights on emerging solar district heating technologies to boost the nearly zero energy building concept," Renewable Energy, Elsevier, vol. 180(C), pages 893-913.
    15. Wendel, Frank & Blesl, Markus & Brodecki, Lukasz & Hufendiek, Kai, 2022. "Expansion or decommission? – Transformation of existing district heating networks by reducing temperature levels in a cost-optimum network design," Applied Energy, Elsevier, vol. 310(C).
    16. Zhang, Zongxi & Zhou, Yuguang & Zhao, Nan & Li, Huan & Tohniyaz, Bahargul & Mperejekumana, Philbert & Hong, Quan & Wu, Rucong & Li, Gang & Sultan, Muhammad & Zayan, Ali Mohammed Ibrahim & Cao, Jinxin , 2021. "Clean heating during winter season in Northern China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    18. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    19. Jangsten, Maria & Filipsson, Peter & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings," Energy, Elsevier, vol. 199(C).
    20. Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221004138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.