IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/1986.html
   My bibliography  Save this paper

Applying Bayesian Model Averaging to Characterise Urban Residential Stock Turnover Dynamics

Author

Listed:
  • Zhou, W.
  • O’Neill, E.
  • Moncaster, A.
  • Reiner, D.
  • Guthrie, P.

Abstract

Building stock is a key determinant in building energy and China is the largest producer of CO2 emissions and the largest consumer of energy and building energy, so any effective energy and climate policy will need to address this key driver of energy use. However, official statistics on total floor area of urban residential stock in China only exist up to 2006. Previous studies estimating Chinese urban residential stock size and energy use made various questionable methodological assumptions and only produced deterministic results. We present a Bayesian approach to characterise the stock turnover dynamics and estimate stock size uncertainties. Firstly, a probabilistic dynamic building stock turnover model is developed to describe the building aging and demolition process governed by a hazard function specified by a parametric survival model. Secondly, using five candidate parametric survival models, the building stock turnover model is simulated through Markov Chain Monte Carlo (MCMC) to obtain posterior distributions of model-specific parameters, estimate marginal likelihood, and make predictions on stock size. Finally, Bayesian Model Averaging (BMA) is applied to create a model ensemble that combines the model-specific posterior predictive distributions of the stock evolution pathway in proportion to posterior model probabilities. This Bayesian modelling framework and its results in the form of probability distributions of annual total stock and age-specific substocks, can provide a solid basis for further modelling and analysis of policy trade-offs across embodied-versus-operational energy consumption and carbon emissions of buildings in the context of sector-wide transitions aimed at decarbonising buildings.

Suggested Citation

  • Zhou, W. & O’Neill, E. & Moncaster, A. & Reiner, D. & Guthrie, P., 2019. "Applying Bayesian Model Averaging to Characterise Urban Residential Stock Turnover Dynamics," Cambridge Working Papers in Economics 1986, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1986
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1986.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tiago M. Fragoso & Wesley Bertoli & Francisco Louzada, 2018. "Bayesian Model Averaging: A Systematic Review and Conceptual Classification," International Statistical Review, International Statistical Institute, vol. 86(1), pages 1-28, April.
    2. Wei Zhou & Alice Moncaster & David M Reiner & Peter Guthrie, 2019. "Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    3. Soetaert, Karline & Petzoldt, Thomas, 2010. "Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i03).
    4. Li, Gong & Shi, Jing, 2010. "Application of Bayesian model averaging in modeling long-term wind speed distributions," Renewable Energy, Elsevier, vol. 35(6), pages 1192-1202.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wei & O'Neill, Eoghan & Moncaster, Alice & Reiner, David M. & Guthrie, Peter, 2020. "Forecasting urban residential stock turnover dynamics using system dynamics and Bayesian model averaging," Applied Energy, Elsevier, vol. 275(C).
    2. Roland Brown & Yingling Fan & Kirti Das & Julian Wolfson, 2021. "Iterated multisource exchangeability models for individualized inference with an application to mobile sensor data," Biometrics, The International Biometric Society, vol. 77(2), pages 401-412, June.
    3. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Hyemin Han, 2024. "Bayesian Model Averaging and Regularized Regression as Methods for Data-Driven Model Exploration, with Practical Considerations," Stats, MDPI, vol. 7(3), pages 1-13, July.
    5. Emanuel Kopp, 2018. "Determinants of U.S. Business Investment," IMF Working Papers 2018/139, International Monetary Fund.
    6. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    8. Hannah Al Ali & Alireza Daneshkhah & Abdesslam Boutayeb & Zindoga Mukandavire, 2022. "Examining Type 1 Diabetes Mathematical Models Using Experimental Data," IJERPH, MDPI, vol. 19(2), pages 1-20, January.
    9. Taffi, Marianna & Paoletti, Nicola & Liò, Pietro & Pucciarelli, Sandra & Marini, Mauro, 2015. "Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea," Ecological Modelling, Elsevier, vol. 306(C), pages 205-215.
    10. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    11. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2021. "Economic drivers of commodity volatility: The case of copper," Resources Policy, Elsevier, vol. 73(C).
    12. Hussnain Mukhtar & Yu-Pin Lin & Oleg V. Shipin & Joy R. Petway, 2017. "Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC," IJERPH, MDPI, vol. 14(7), pages 1-15, July.
    13. Mihai MUTASCU & Nicolae-Bogdan IANC & ALBERT LESSOUA, 2021. "Public debt and inequality in Sub-Saharan Africa: the case of EMCCA and WAEMU countries," LEO Working Papers / DR LEO 2909, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    14. Carine Lausselet & Johana Paola Forero Urrego & Eirik Resch & Helge Brattebø, 2021. "Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 419-434, April.
    15. Marcin Błażejowski & Jacek Kwiatkowski & Paweł Kufel, 2020. "BACE and BMA Variable Selection and Forecasting for UK Money Demand and Inflation with Gretl," Econometrics, MDPI, vol. 8(2), pages 1-29, May.
    16. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    17. Jinyoung Yang & Jeffrey S. Rosenthal, 2017. "Automatically tuned general-purpose MCMC via new adaptive diagnostics," Computational Statistics, Springer, vol. 32(1), pages 315-348, March.
    18. repec:jss:jstsof:33:i09 is not listed on IDEAS
    19. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang & Zhang, Yixin, 2015. "A self-adaptive hybrid approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 78(C), pages 374-385.
    20. Huihang Liu & Xinyu Zhang, 2023. "Frequentist model averaging for undirected Gaussian graphical models," Biometrics, The International Biometric Society, vol. 79(3), pages 2050-2062, September.
    21. Francisco Alonso & Sergio A. Useche & Eliseo Valle & Cristina Esteban & Javier Gene-Morales, 2021. "Could Road Safety Education (RSE) Help Parents Protect Children? Examining Their Driving Crashes with Children on Board," IJERPH, MDPI, vol. 18(7), pages 1-13, March.

    More about this item

    Keywords

    building stock; lifetime distribution; Bayesian Model Averaging; Markov Chain Monte Carlo; embodied energy; operational energy; China;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.