IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2890-d233072.html
   My bibliography  Save this article

Combined Effects of the Surface Urban Heat Island with Landscape Composition and Configuration Based on Remote Sensing: A Case Study of Shanghai, China

Author

Listed:
  • Hongyu Du

    (Institute of Ecology and Sustainable Development, Shanghai Academy of Social Sciences, N0. 622, Middle Huaihai Road, Huangpu District, Shanghai 200020, China)

  • Jinquan Ai

    (Faculty of Geomatics, East China University of Technology, Nanchang 330013, China)

  • Yongli Cai

    (Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
    Department of Environmental Science, East China Normal University, No. 500, Dongchuan Road, Minhang District, Shanghai 200241, China)

  • Hong Jiang

    (Institute of Ecology Engineering, Guizhou University of Engineering Science, Bijie 51700, China)

  • Pudong Liu

    (School of Surveying and Geoinformatics, Shandong Jianzhu University, Jinan 250101, China
    The Department of Automation, Qingdao University, Qingdao 266071, China)

Abstract

Rapid urbanization leads to changes in surface coverage and landscape patterns. This results in urban heat island (UHI) effects and a series of negative ecological consequences. Considering this concern and taking Shanghai as an example, this paper concentrates on the effects of surface coverage and landscape patterns on urban land surface temperature (LST). The research is based on quantitative retrieval of remote sensing data with consideration of methods in multiple disciplines, including landscape ecology, geographic information systems, and statistical analysis. It concludes that, over time, the thermal environment of Shanghai is becoming critical. The average LST ranking of different surface coverage is as follows: Construction land (CL) > bare land (BL) > green land (GL) > agricultural land (AL) > water body (WB). LST varies significantly with the type of surface coverage. CL contributes the most to the UHI, while WB and GL have obvious mitigation effects on the UHI. The large area, low degree of landscape fragmentation, and complex outlines lead to low LST rankings for GL, WB, and AL and a high LST ranking for CL. The conclusions indicate that CL should be broken down by GL and WB into discrete pieces to effectively mitigate UHI effects. The research reveals UHI features and changes in Shanghai over the years and provides practical advice that can be used by urban planning authorities to mitigate UHI.

Suggested Citation

  • Hongyu Du & Jinquan Ai & Yongli Cai & Hong Jiang & Pudong Liu, 2019. "Combined Effects of the Surface Urban Heat Island with Landscape Composition and Configuration Based on Remote Sensing: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2890-:d:233072
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haiting Wang & Yuanzhi Zhang & Jin Yeu Tsou & Yu Li, 2017. "Surface Urban Heat Island Analysis of Shanghai (China) Based on the Change of Land Use and Land Cover," Sustainability, MDPI, vol. 9(9), pages 1-22, August.
    2. Sun, Ranhao & Chen, Liding, 2017. "Effects of green space dynamics on urban heat islands: Mitigation and diversification," Ecosystem Services, Elsevier, vol. 23(C), pages 38-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vipin Kumar Oad & Xiaohua Dong & Muhammad Arfan & Vicky Kumar & Muhammad Salman Mohsin & Syed Saad & Haishen Lü & Muhammad Imran Azam & Muhammad Tayyab, 2020. "Identification of Shift in Sowing and Harvesting Dates of Rice Crop ( L. Oryza sativa ) through Remote Sensing Techniques: A Case Study of Larkana District," Sustainability, MDPI, vol. 12(9), pages 1-15, April.
    2. Hongyu Du & Fengqi Zhou & Chunlan Li & Wenbo Cai & Hong Jiang & Yongli Cai, 2020. "Analysis of the Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island in Rapid Urbanization, a Case Study of Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    3. Abdullah Addas, 2023. "Machine Learning Techniques to Map the Impact of Urban Heat Island: Investigating the City of Jeddah," Land, MDPI, vol. 12(6), pages 1-14, May.
    4. Guoming Du & Wenqi Liu & Tao Pan & Haoxuan Yang & Qi Wang, 2019. "Cooling Effect of Paddy on Land Surface Temperature in Cold China Based on MODIS Data: A Case Study in Northern Sanjiang Plain," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    5. Sushobhan Sen & Jeffery Roesler & Benjamin Ruddell & Ariane Middel, 2019. "Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona," Sustainability, MDPI, vol. 11(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqing An & Jin Yeu Tsou & Kapo Wong & Yuanzhi Zhang & Dawei Liu & Yu Li, 2018. "Detecting Land Use Changes in a Rapidly Developing City during 1990–2017 Using Satellite Imagery: A Case Study in Hangzhou Urban Area, China," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    2. Amit Kumar & Vivek Agarwal & Lalit Pal & Surendra Kumar Chandniha & Vishal Mishra, 2021. "Effect of Land Surface Temperature on Urban Heat Island in Varanasi City, India," J, MDPI, vol. 4(3), pages 1-10, August.
    3. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    4. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    5. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    6. Tong Zhang & Sophia Shuang Chen & Guangyu Li, 2020. "Exploring the relationships between urban form metrics and the vegetation biomass loss under urban expansion in China," Environment and Planning B, , vol. 47(3), pages 363-380, March.
    7. Muhammad Sadiq Khan & Sami Ullah & Tao Sun & Arif UR Rehman & Liding Chen, 2020. "Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    8. Zhijie Wu & Yixin Zhang, 2018. "Spatial Variation of Urban Thermal Environment and Its Relation to Green Space Patterns: Implication to Sustainable Landscape Planning," Sustainability, MDPI, vol. 10(7), pages 1-11, June.
    9. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    10. Shanshan Chen & Dagmar Haase & Bing Xue & Thilo Wellmann & Salman Qureshi, 2021. "Integrating Quantity and Quality to Assess Urban Green Space Improvement in the Compact City," Land, MDPI, vol. 10(12), pages 1-14, December.
    11. Agnieszka Flaga-Maryańczyk & Katarzyna Baran-Gurgul, 2021. "The Impact of Local Anti-Smog Resolution in Cracow (Poland) on the Concentrations of PM10 and BaP Based on the Results of Measurements of the State Environmental Monitoring," Energies, MDPI, vol. 15(1), pages 1-19, December.
    12. Yunfang Jiang & Shidan Jiang & Tiemao Shi, 2020. "Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai," IJERPH, MDPI, vol. 17(22), pages 1-29, November.
    13. Han Xiao & Monika Kopecká & Shan Guo & Yanning Guan & Danlu Cai & Chunyan Zhang & Xiaoxin Zhang & Wutao Yao, 2018. "Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    14. Anette Shekanino & Avaleen Agustin & Annette Aladefa & Jason Amezquita & Demetri Gonzalez & Emily Heldenbrand & Alyssa Hernandez & Maximus May & Anthony Nuno & Joshua Ojeda & Ashley Ortiz & Taylor Pun, 2023. "Differential Stomatal Responses to Surface Permeability by Sympatric Urban Tree Species Advance Novel Mitigation Strategy for Urban Heat Islands," Sustainability, MDPI, vol. 15(15), pages 1-11, August.
    15. Shouzhi Chang & Qigang Jiang & Ying Zhao, 2018. "Integrating CFD and GIS into the Development of Urban Ventilation Corridors: A Case Study in Changchun City, China," Sustainability, MDPI, vol. 10(6), pages 1-16, May.
    16. Mirza Waleed & Muhammad Sajjad & Anthony Owusu Acheampong & Md. Tauhidul Alam, 2023. "Towards Sustainable and Livable Cities: Leveraging Remote Sensing, Machine Learning, and Geo-Information Modelling to Explore and Predict Thermal Field Variance in Response to Urban Growth," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    17. Mohamed Ali Mohamed & Julian Anders & Christoph Schneider, 2020. "Monitoring of Changes in Land Use/Land Cover in Syria from 2010 to 2018 Using Multitemporal Landsat Imagery and GIS," Land, MDPI, vol. 9(7), pages 1-31, July.
    18. Kaihua Zhang & Guoliang Yun & Peihao Song & Kun Wang & Ang Li & Chenyu Du & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Xiaoxue Zhu & Shidong Ge, 2023. "Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    19. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.
    20. Yangyang Gong & Zulpiya Mamat & Lei Shi & Fenglin Liu, 2023. "Restorative Effects of Park Visiting on Physiology, Psychology, and Society and the Factors Influencing Park Visiting," Sustainability, MDPI, vol. 15(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2890-:d:233072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.