IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3155-d1064786.html
   My bibliography  Save this article

Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens

Author

Listed:
  • Kaihua Zhang

    (Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
    These authors contributed equally to this work.)

  • Guoliang Yun

    (College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
    These authors contributed equally to this work.)

  • Peihao Song

    (Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
    International Union Laboratory of Landscape Architecture, Henan Agricultural University, Zhengzhou 450002, China)

  • Kun Wang

    (Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China)

  • Ang Li

    (Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China)

  • Chenyu Du

    (Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China)

  • Xiaoli Jia

    (Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China)

  • Yuan Feng

    (Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China)

  • Meng Wu

    (Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China)

  • Kexin Qu

    (Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China)

  • Xiaoxue Zhu

    (College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing 655011, China)

  • Shidong Ge

    (Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
    International Union Laboratory of Landscape Architecture, Henan Agricultural University, Zhengzhou 450002, China)

Abstract

Urban parks can mitigate the urban heat island (UHI) and effectively improve the urban microclimate. In addition, quantifying the park land surface temperature (LST) and its relationship with park characteristics is crucial for guiding park design in practical urban planning. The study’s primary purpose is to investigate the relationship between LST and landscape features in different park categories based on high-resolution data. In this study, we identified the land cover types of 123 parks in Luoyang using WorldView-2 data and selected 26 landscape pattern indicators to quantify the park landscape characteristics. The result shows that the parks can alleviate UHI in most seasons, but some can increase it in winter. While the percentage of bare land, PD, and PAFRAC have a positive impact on LST, AREA_MN has a significant negative impact. However, to deal with the current urban warming trend, a compact, clustered landscape configuration is required. This study provides an understanding of the major factors affecting the mitigation of thermal effects in urban parks (UP) and establishes a practical and feasible urban park renewal method under the idea of climate adaptive design, which provides valuable inspiration for urban park planning and design.

Suggested Citation

  • Kaihua Zhang & Guoliang Yun & Peihao Song & Kun Wang & Ang Li & Chenyu Du & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Xiaoxue Zhu & Shidong Ge, 2023. "Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3155-:d:1064786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    2. Xinjun Wang & Haoming Cheng & Juan Xi & Guoying Yang & Yanwen Zhao, 2018. "Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect," Sustainability, MDPI, vol. 10(3), pages 1-14, February.
    3. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Hongbo Zhao & Zhibin Ren & Juntao Tan, 2018. "The Spatial Patterns of Land Surface Temperature and Its Impact Factors: Spatial Non-Stationarity and Scale Effects Based on a Geographically-Weighted Regression Model," Sustainability, MDPI, vol. 10(7), pages 1-21, June.
    5. Meng Huang & Peng Cui & Xin He, 2018. "Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    6. Yue Jiang & Wenpeng Lin, 2021. "A Comparative Analysis of Retrieval Algorithms of Land Surface Temperature from Landsat-8 Data: A Case Study of Shanghai, China," IJERPH, MDPI, vol. 18(11), pages 1-18, May.
    7. Dongrui Han & Xiaohuan Yang & Hongyan Cai & Xinliang Xu, 2020. "Impacts of Neighboring Buildings on the Cold Island Effect of Central Parks: A Case Study of Beijing, China," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    8. Sun, Ranhao & Chen, Liding, 2017. "Effects of green space dynamics on urban heat islands: Mitigation and diversification," Ecosystem Services, Elsevier, vol. 23(C), pages 38-46.
    9. Klok, Lisette & Zwart, Sander & Verhagen, Henk & Mauri, Elena, 2012. "The surface heat island of Rotterdam and its relationship with urban surface characteristics," Resources, Conservation & Recycling, Elsevier, vol. 64(C), pages 23-29.
    10. Najeebullah Khan & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim & Rawshan Ali, 2019. "Influence of Surface Water Bodies on the Land Surface Temperature of Bangladesh," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianwei Gao & Haiting Han & Shidong Ge, 2023. "Carbon-Saving Potential of Urban Parks in the Central Plains City: A High Spatial Resolution Study Using a Forest City, Shangqiu, China, as a Lens," Land, MDPI, vol. 12(7), pages 1-19, July.
    2. Yuan Feng & Kaihua Zhang & Ang Li & Yangyang Zhang & Kun Wang & Nan Guo & Ho Yi Wan & Xiaoyang Tan & Nalin Dong & Xin Xu & Ruizhen He & Bing Wang & Long Fan & Shidong Ge & Peihao Song, 2024. "Spatial and Seasonal Variation and the Driving Mechanism of the Thermal Effects of Urban Park Green Spaces in Zhengzhou, China," Land, MDPI, vol. 13(9), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    2. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.
    3. Yu-Ling Sun & Chun-Hua Zhang & Ying-Jie Lian & Jia-Min Zhao, 2022. "Exploring the Global Research Trends of Cities and Climate Change Based on a Bibliometric Analysis," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    4. Jianwei Gao & Haiting Han & Shidong Ge, 2023. "Carbon-Saving Potential of Urban Parks in the Central Plains City: A High Spatial Resolution Study Using a Forest City, Shangqiu, China, as a Lens," Land, MDPI, vol. 12(7), pages 1-19, July.
    5. Magdalena Worsa-Kozak & Adalbert Arsen, 2023. "Groundwater Urban Heat Island in Wrocław, Poland," Land, MDPI, vol. 12(3), pages 1-16, March.
    6. Michael C. Ekwe & Fatimah Adamu & Joseph Gana & Grace Chika Nwafor & Rabi Usman & Jemimah Nom & Ogonnaya D. Onu & Oluwatola Ibukun Adedeji & Shaba A. Halilu & Olaide M. Aderoju, 2021. "The effect of green spaces on the urban thermal environment during a hot-dry season: a case study of Port Harcourt, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10056-10079, July.
    7. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    8. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    9. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    10. Frankie Fanjie Zeng & Jiajun Feng & Yuanzhi Zhang & Jin Yeu Tsou & Tengfei Xue & Yu Li & Rita Yi Man Li, 2021. "Comparative Study of Factors Contributing to Land Surface Temperature in High-Density Built Environments in Megacities Using Satellite Imagery," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    11. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    12. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    13. Lin, Boqiang & Zhou, Yicheng, 2021. "How does vertical fiscal imbalance affect the upgrading of industrial structure? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    14. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    15. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    16. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    17. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    18. Menconi, M.E. & Giordano, S. & Grohmann, D., 2022. "Revisiting global food production and consumption patterns by developing resilient food systems for local communities," Land Use Policy, Elsevier, vol. 119(C).
    19. Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.
    20. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3155-:d:1064786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.