IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5672-d276382.html
   My bibliography  Save this article

Cooling Effect of Paddy on Land Surface Temperature in Cold China Based on MODIS Data: A Case Study in Northern Sanjiang Plain

Author

Listed:
  • Guoming Du

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

  • Wenqi Liu

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

  • Tao Pan

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Department of Geography, Ghent University, 9000 Ghent, Belgium
    Sino-Belgian Joint Laboratory of Geo-information, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Sino-Belgian Joint Laboratory of Geo-information, Ghent University, 9000 Ghent, Belgium)

  • Haoxuan Yang

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

  • Qi Wang

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

Abstract

Fast-growing crops have been evolved in North China, accompanied by intense paddy expansion, leading to dramatic impacts on the agricultural environment. Among these environmental issues, the impact of paddy expansion on land surface temperature is still unclear. In the present study, based on Landsat images and MODIS land surface temperature (LST) products, the crop pattern and monthly LST in the northern Sanjiang Plain are obtained. A 1 km scale grid unit is built to investigate the relationship between LST and paddy expansion. The results obtained from the study are as follows. Firstly, for crop patterns, cropland planting is given priority to paddy fields, accompanied by an aggregated pattern, while upland crops present a discrete pattern. Secondly, for LST changes during the growing season, the maximum LST occurs in June, and the lowest values occur in October across the whole region. In addition, the LST of paddy fields is lower compared with that of upland crops for the whole growing season. Thirdly, at the 1 km grid scale, the relationship between monthly LST and paddy field ratio is significantly negative, and better represented by a cubic function rather than a linear fit. Finally, LST decreases with the increased fraction of the rice paddy area more rapidly when rice paddy is aggregated and accounted for by more than 80% of each study grid. The findings of this study are important to guide agricultural production and to better understand the environmental effects of paddy expansion in cold regions.

Suggested Citation

  • Guoming Du & Wenqi Liu & Tao Pan & Haoxuan Yang & Qi Wang, 2019. "Cooling Effect of Paddy on Land Surface Temperature in Cold China Based on MODIS Data: A Case Study in Northern Sanjiang Plain," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5672-:d:276382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuesong Zhang & Maomao Zhang & Ju He & Quanxi Wang & Deshou Li, 2019. "The Spatial-Temporal Characteristics of Cultivated Land and Its Influential Factors in The Low Hilly Region: A Case Study of Lishan Town, Hubei Province, China," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    2. Haoyue Wu & Hanjiao Huang & Jin Tang & Wenkuan Chen & Yanqiu He, 2019. "Net Greenhouse Gas Emissions from Agriculture in China: Estimation, Spatial Correlation and Convergence," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    3. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    4. Xiaolong Wang & Yun Chen & Xiaowei Chen & Rongrong He & Yueshan Guan & Yawen Gu & Yong Chen, 2019. "Crop Production Pushes up Greenhouse Gases Emissions in China: Evidence from Carbon Footprint Analysis Based on National Statistics Data," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    5. Zhipeng Zhu & Guangyu Wang & Jianwen Dong, 2019. "Correlation Analysis between Land Use/Cover Change and Air Pollutants—A Case Study in Wuyishan City," Energies, MDPI, vol. 12(13), pages 1-15, July.
    6. Nishida, Kazuhiro & Yoshida, Shuichiro & Shiozawa, Sho, 2018. "Theoretical analysis of the effects of irrigation rate and paddy water depth on water and leaf temperatures in a paddy field continuously irrigated with running water," Agricultural Water Management, Elsevier, vol. 198(C), pages 10-18.
    7. Khadiza Begum & Matthias Kuhnert & Jagadeesh Yeluripati & Stephen Ogle & William Parton & Md Abdul Kader & Pete Smith, 2018. "Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh," Land, MDPI, vol. 7(3), pages 1-18, July.
    8. Yunjiang Zuo & Yuedong Guo & Changchun Song & Shaofei Jin & Tianhua Qiao, 2018. "Study on Soil Water and Heat Transport Characteristic Responses to Land Use Change in Sanjiang Plain," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    9. Pin Wang & Zhao Zhang & Xiao Song & Yi Chen & Xing Wei & Peijun Shi & Fulu Tao, 2014. "Temperature variations and rice yields in China: historical contributions and future trends," Climatic Change, Springer, vol. 124(4), pages 777-789, June.
    10. Hongyu Du & Jinquan Ai & Yongli Cai & Hong Jiang & Pudong Liu, 2019. "Combined Effects of the Surface Urban Heat Island with Landscape Composition and Configuration Based on Remote Sensing: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    11. Chunxia Yang & Hua Zheng & Binbin Huang & Ruonan Li & Zhiyun Ouyang & Cong Li, 2018. "Crop Structure Changes Altered the Cropland Nitrogen Balance between 2005 and 2015 on the Sanjiang Plain, China," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vipin Kumar Oad & Xiaohua Dong & Muhammad Arfan & Vicky Kumar & Muhammad Salman Mohsin & Syed Saad & Haishen Lü & Muhammad Imran Azam & Muhammad Tayyab, 2020. "Identification of Shift in Sowing and Harvesting Dates of Rice Crop ( L. Oryza sativa ) through Remote Sensing Techniques: A Case Study of Larkana District," Sustainability, MDPI, vol. 12(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vipin Kumar Oad & Xiaohua Dong & Muhammad Arfan & Vicky Kumar & Muhammad Salman Mohsin & Syed Saad & Haishen Lü & Muhammad Imran Azam & Muhammad Tayyab, 2020. "Identification of Shift in Sowing and Harvesting Dates of Rice Crop ( L. Oryza sativa ) through Remote Sensing Techniques: A Case Study of Larkana District," Sustainability, MDPI, vol. 12(9), pages 1-15, April.
    2. Haoyue Wu & Jin Tang & Hanjiao Huang & Wenkuan Chen & Yue Meng, 2021. "Net Carbon Sequestration Performance of Cropland Use in China’s Principal Grain-Producing Area: An Evaluation and Spatiotemporal Divergence," Land, MDPI, vol. 10(7), pages 1-19, July.
    3. Haoyue Wu & Wanqi Yan & Xiangjiang Zheng & Lei Zhou & Jinshan Ma & Lu Liu & Yue Meng, 2023. "Carbon-Emission Density of Crop Production in China: Spatiotemporal Characteristics, Regional Disparities, and Convergence," Agriculture, MDPI, vol. 13(5), pages 1-17, April.
    4. Nishida, Kazuhiro & Yoshida, Shuichiro & Shiozawa, Sho, 2021. "Numerical model to predict water temperature distribution in a paddy rice field," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Zhenhuan Liu & Guojie Zhang & Peng Yang, 2016. "Geographical Variation of Climate Change Impact on Rice Yield in the Rice-Cropping Areas of Northeast China during 1980–2008," Sustainability, MDPI, vol. 8(7), pages 1-12, July.
    6. Yaxin Shi & Yishao Shi, 2020. "Spatio-Temporal Variation Characteristics and Driving Forces of Farmland Shrinkage in Four Metropolises in East Asia," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    7. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, vol. 9(5), pages 1-13, April.
    8. Heidarlou, Hadi Beygi & Mirshekarlou, Asma Karamat & Lopez-Carr, David & Borz, Stelian Alexandru, 2024. "Conservation policy and forest transition in Zagros forests: Statistical analysis of human welfare, biophysical, and climate drivers," Forest Policy and Economics, Elsevier, vol. 161(C).
    9. Mateusz Ciski & Krzysztof Rząsa & Marek Ogryzek, 2019. "Use of GIS Tools in Sustainable Heritage Management—The Importance of Data Generalization in Spatial Modeling," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    10. Hongyu Du & Fengqi Zhou & Chunlan Li & Wenbo Cai & Hong Jiang & Yongli Cai, 2020. "Analysis of the Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island in Rapid Urbanization, a Case Study of Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    11. Maomao Zhang & Weigang Chen & Kui Cai & Xin Gao & Xuesong Zhang & Jinxiang Liu & Zhiyuan Wang & Deshou Li, 2019. "Analysis of the Spatial Distribution Characteristics of Urban Resilience and Its Influencing Factors: A Case Study of 56 Cities in China," IJERPH, MDPI, vol. 16(22), pages 1-22, November.
    12. Zijuan Zhao & Beilei Fan & Dong Liu, 2021. "Evaluating the Impact of Crop Layout Changes on N and P Nutrient Balance: A Case Study in the West Liaohe River Basin, China," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    13. Jin Huang & Fangmin Zhang & Yan Xue & Qi Li, 2016. "Recent changes of extreme dryness/wetness pattern and its possible impact on rice productivity in Jiangsu Province, southeast China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1967-1979, December.
    14. Francisco Fontes & Ashley Gorst & Charles Palmer, 2021. "Threshold effects of extreme weather events on cereal yields in India," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
    15. Qijiao Xie & Qi Sun, 2021. "Monitoring the Spatial Variation of Aerosol Optical Depth and Its Correlation with Land Use/Land Cover in Wuhan, China: A Perspective of Urban Planning," IJERPH, MDPI, vol. 18(3), pages 1-18, January.
    16. Abdullah Addas, 2023. "Machine Learning Techniques to Map the Impact of Urban Heat Island: Investigating the City of Jeddah," Land, MDPI, vol. 12(6), pages 1-14, May.
    17. Jiujin Lu & Yunzhang Xu & Haiyan Sheng & Yajun Gao & Jim Moir & Rong Zhang & Shouzhong Xie, 2022. "Nitrogen Fertilizer and Nitrapyrin for Greenhouse Gas Reduction in Wolfberry Orchards on the Qinghai–Tibetan Plateau," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    18. Jin Huang & Yadong Lei & Fangmin Zhang & Zhenghua Hu, 2017. "Spatio-temporal analysis of meteorological disasters affecting rice, using multi-indices, in Jiangsu province, Southeast China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(4), pages 661-672, August.
    19. Will McConnell, 2020. "Introduction to Sustainability Journal Special Edition “Global Warming and Sustainability Issues”," Sustainability, MDPI, vol. 12(14), pages 1-7, July.
    20. Jinyu Han & Jiansheng Qu & Dai Wang & Tek Narayan Maraseni, 2023. "Accounting for and Comparison of Greenhouse Gas (GHG) Emissions between Crop and Livestock Sectors in China," Land, MDPI, vol. 12(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5672-:d:276382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.