IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i22p8684-d449526.html
   My bibliography  Save this article

Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai

Author

Listed:
  • Yunfang Jiang

    (Center for Modern Chinese City Studies, School of Urban and Regional Science, East China Normal University, Shanghai 200062, China
    Institute of Eco-Chongming, Shanghai 202162, China)

  • Shidan Jiang

    (Center for Modern Chinese City Studies, School of Urban and Regional Science, East China Normal University, Shanghai 200062, China
    Institute of Eco-Chongming, Shanghai 202162, China)

  • Tiemao Shi

    (Institute of Spatial Planning and Design, Shenyang Jianzhu University, Shenyang 110168, China)

Abstract

Different structural patterns of waterfront green space networks in built-up areas have different synergistic cooling characteristics in cities. This study’s aim is to determine what kinds of spatial structures and morphologies of waterfront green spaces offer a good cooling effect, combined with three different typical patterns in Shanghai. A multidimensional spatial influence variable system based on the cooling effect was constructed to describe the spatial structural and morphological factors of the green space network. The ENVI-met 4.3 software, developed by Michael Bruse at Bochum, German, was used to simulate the microclimate distribution data, combined with the boosted regression tree (BRT) model and the correlation analysis method. The results showed that at the network level, the distance from the water body and the connectivity of green space had a stronger cooling correlation. The orientation of green corridors consistent with a summer monsoon had larger cooling effect ranges. In terms of spatial morphology, the vegetation sky view factor (SVF) and Vegetation Surface Albedo (VS Albedo ) had an important correlation with air temperature (T), and the green corridor with a 20–25 m width had the largest marginal effect on cooling. These results will provide useful guidance for urban climate adaptive planning and design.

Suggested Citation

  • Yunfang Jiang & Shidan Jiang & Tiemao Shi, 2020. "Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai," IJERPH, MDPI, vol. 17(22), pages 1-29, November.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:22:p:8684-:d:449526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/22/8684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/22/8684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Roebeling & Miguel Saraiva & Anna Palla & Ilaria Gnecco & Carla Teotónio & Teresa Fidelis & Filomena Martins & Henrique Alves & João Rocha, 2017. "Assessing the socio-economic impacts of green/blue space, urban residential and road infrastructure projects in the Confluence (Lyon): a hedonic pricing simulation approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(3), pages 482-499, March.
    2. Yu, Hao & Cooper, Arthur R. & Infante, Dana M., 2020. "Improving species distribution model predictive accuracy using species abundance: Application with boosted regression trees," Ecological Modelling, Elsevier, vol. 432(C).
    3. Yunfang Jiang & Danran Song & Tiemao Shi & Xuemei Han, 2018. "Adaptive Analysis of Green Space Network Planning for the Cooling Effect of Residential Blocks in Summer: A Case Study in Shanghai," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    4. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    5. Sun, Ranhao & Chen, Liding, 2017. "Effects of green space dynamics on urban heat islands: Mitigation and diversification," Ecosystem Services, Elsevier, vol. 23(C), pages 38-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunfang Jiang & Jing Huang & Tiemao Shi & Xiaolin Li, 2021. "Cooling Island Effect of Blue-Green Corridors: Quantitative Comparison of Morphological Impacts," IJERPH, MDPI, vol. 18(22), pages 1-28, November.
    2. Yunfang Jiang & Jing Huang & Tiemao Shi & Hongxiang Wang, 2021. "Interaction of Urban Rivers and Green Space Morphology to Mitigate the Urban Heat Island Effect: Case-Based Comparative Analysis," IJERPH, MDPI, vol. 18(21), pages 1-29, October.
    3. Shuiyu Yan & Jun Tang, 2021. "Optimization of Green Space Planning to Improve Ecosystem Services Efficiency: The Case of Chongqing Urban Areas," IJERPH, MDPI, vol. 18(16), pages 1-16, August.
    4. Ningcheng Gao & Hui Zhang & Pei Wang & Ling Ning & Nyuk Hien Wong & Haibo Yu & Zikang Ke, 2023. "Research on Microclimate-Suitable Spatial Patterns of Waterfront Settlements in Summer: A Case Study of the Nan Lake Area in Wuhan, China," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    5. Yanxia Hu & Changqing Wang & Jingjing Li, 2023. "Assessment of Heat Mitigation Services Provided by Blue and Green Spaces: An Application of the InVEST Urban Cooling Model with Scenario Analysis in Wuhan, China," Land, MDPI, vol. 12(5), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunfang Jiang & Jing Huang & Tiemao Shi & Xiaolin Li, 2021. "Cooling Island Effect of Blue-Green Corridors: Quantitative Comparison of Morphological Impacts," IJERPH, MDPI, vol. 18(22), pages 1-28, November.
    2. Yunfang Jiang & Jing Huang & Tiemao Shi & Hongxiang Wang, 2021. "Interaction of Urban Rivers and Green Space Morphology to Mitigate the Urban Heat Island Effect: Case-Based Comparative Analysis," IJERPH, MDPI, vol. 18(21), pages 1-29, October.
    3. Roy, Arijit & Bhattacharya, Sudeepto & Ramprakash, M. & Senthil Kumar, A., 2016. "Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach," Ecological Modelling, Elsevier, vol. 329(C), pages 77-85.
    4. Amit Kumar & Vivek Agarwal & Lalit Pal & Surendra Kumar Chandniha & Vishal Mishra, 2021. "Effect of Land Surface Temperature on Urban Heat Island in Varanasi City, India," J, MDPI, vol. 4(3), pages 1-10, August.
    5. Qian Zuo & Yong Zhou & Jingyi Liu, 2022. "Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China," IJERPH, MDPI, vol. 19(15), pages 1-27, August.
    6. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    7. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    8. Barker, Justin R. & MacIsaac, Hugh J., 2022. "Species distribution models: Administrative boundary centroid occurrences require careful interpretation," Ecological Modelling, Elsevier, vol. 472(C).
    9. Tong Zhang & Sophia Shuang Chen & Guangyu Li, 2020. "Exploring the relationships between urban form metrics and the vegetation biomass loss under urban expansion in China," Environment and Planning B, , vol. 47(3), pages 363-380, March.
    10. Muhammad Sadiq Khan & Sami Ullah & Tao Sun & Arif UR Rehman & Liding Chen, 2020. "Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    11. Anna Palla & Ilaria Gnecco, 2021. "The Web-GIS TRIG Eau Platform to Assess Urban Flood Mitigation by Domestic Rainwater Harvesting Systems in Two Residential Settlements in Italy," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    12. Zhicong Zhao & Pei Wang & Xiaoshan Wang & Fangyi Wang & Tz-Hsuan Tseng & Yue Cao & Shuyu Hou & Jiayuan Peng & Rui Yang, 2022. "A Protected Area Connectivity Evaluation and Strategy Development Framework for Post-2020 Biodiversity Conservation," Land, MDPI, vol. 11(10), pages 1-17, September.
    13. Zhijie Wu & Yixin Zhang, 2018. "Spatial Variation of Urban Thermal Environment and Its Relation to Green Space Patterns: Implication to Sustainable Landscape Planning," Sustainability, MDPI, vol. 10(7), pages 1-11, June.
    14. Kang-Wook Lee & Kyong-Hoon Kim, 2021. "Analyzing Cost and Schedule Growths of Road Construction Projects, Considering Project Characteristics," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    15. Hossain, S. M. Zakir & Sultana, Nahid & Razzak, Shaikh A. & Hossain, Mohammad M., 2022. "Modeling and multi-objective optimization of microalgae biomass production and CO2 biofixation using hybrid intelligence approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Shanshan Chen & Dagmar Haase & Bing Xue & Thilo Wellmann & Salman Qureshi, 2021. "Integrating Quantity and Quality to Assess Urban Green Space Improvement in the Compact City," Land, MDPI, vol. 10(12), pages 1-14, December.
    17. Hui Ye & Zhaoping Yang & Xiaoliang Xu, 2020. "Ecological Corridors Analysis Based on MSPA and MCR Model—A Case Study of the Tomur World Natural Heritage Region," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    18. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    19. Zambrano-Monserrate, Manuel A. & Ruano, María Alejandra & Yoong-Parraga, Cristina & Silva, Carlos A., 2021. "Urban green spaces and housing prices in developing countries: A Two-stage quantile spatial regression analysis," Forest Policy and Economics, Elsevier, vol. 125(C).
    20. Han Xiao & Monika Kopecká & Shan Guo & Yanning Guan & Danlu Cai & Chunyan Zhang & Xiaoxin Zhang & Wutao Yao, 2018. "Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid," Sustainability, MDPI, vol. 10(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:22:p:8684-:d:449526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.