IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p8319-8338d53784.html
   My bibliography  Save this article

Novel Segmentation Technique for Measured Three-Phase Voltage Dips

Author

Listed:
  • Isabel M. Moreno-Garcia

    (Electronic Technology Area, University of Cordoba, Cordoba 14002, Spain)

  • Antonio Moreno-Munoz

    (Electronic Technology Area, University of Cordoba, Cordoba 14002, Spain)

  • Aurora Gil-de-Castro

    (Electronic Technology Area, University of Cordoba, Cordoba 14002, Spain)

  • Math Bollen

    (Electric Power Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Skellefteå 931 87, Sweden)

  • Irene Y. H. Gu

    (Department of Signals and Systems, Chalmers University of Technology, Göteborg 412 58, Sweden)

Abstract

This paper focuses on issues arising from the need to automatically analyze disturbances in the future (smart) grid. Accurate time allocation of events and the sequences of events is an important part of such an analysis. The performance of a joint causal and anti-causal (CaC) segmentation method has been analyzed with a set of real measurement signals, using an alternative detection technique based on a cumulative sum (CUSUM) algorithm. The results show that the location in time of underlying transitions in the power system can be more accurately estimated by combining CaC segmentation methods.

Suggested Citation

  • Isabel M. Moreno-Garcia & Antonio Moreno-Munoz & Aurora Gil-de-Castro & Math Bollen & Irene Y. H. Gu, 2015. "Novel Segmentation Technique for Measured Three-Phase Voltage Dips," Energies, MDPI, vol. 8(8), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8319-8338:d:53784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/8319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/8319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nantian Huang & Shuxin Zhang & Guowei Cai & Dianguo Xu, 2015. "Power Quality Disturbances Recognition Based on a Multiresolution Generalized S-Transform and a PSO-Improved Decision Tree," Energies, MDPI, vol. 8(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horia Gheorghe Beleiu & Ioana Natalia Beleiu & Sorin Gheorghe Pavel & Cosmin Pompei Darab, 2018. "Management of Power Quality Issues from an Economic Point of View," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    2. Xianyong Xiao & Wenxi Hu & Huaying Zhang & Jingwen Ai & Zixuan Zheng, 2018. "An Adaptive Approach for Voltage Sag Automatic Segmentation," Energies, MDPI, vol. 11(12), pages 1-17, December.
    3. Alena Otcenasova & Roman Bodnar & Michal Regula & Marek Hoger & Michal Repak, 2017. "Methodology for Determination of the Number of Equipment Malfunctions Due to Voltage Sags," Energies, MDPI, vol. 10(3), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
    2. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Lintao Yang & Honggeng Yang & Haitao Liu, 2018. "GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    4. Juan Carlos Bravo-Rodríguez & Francisco J. Torres & María D. Borrás, 2020. "Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-20, June.
    5. Huihui Wang & Ping Wang & Tao Liu, 2017. "Power Quality Disturbance Classification Using the S-Transform and Probabilistic Neural Network," Energies, MDPI, vol. 10(1), pages 1-19, January.
    6. Jingjing Bai & Wei Gu & Xiaodong Yuan & Qun Li & Feng Xue & Xuchong Wang, 2015. "Power Quality Prediction, Early Warning, and Control for Points of Common Coupling with Wind Farms," Energies, MDPI, vol. 8(9), pages 1-18, August.
    7. Misael Lopez-Ramirez & Luis Ledesma-Carrillo & Eduardo Cabal-Yepez & Carlos Rodriguez-Donate & Homero Miranda-Vidales & Arturo Garcia-Perez, 2016. "EMD-Based Feature Extraction for Power Quality Disturbance Classification Using Moments," Energies, MDPI, vol. 9(7), pages 1-15, July.
    8. Supanat Chamchuen & Apirat Siritaratiwat & Pradit Fuangfoo & Puripong Suthisopapan & Pirat Khunkitti, 2021. "High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm," Energies, MDPI, vol. 14(5), pages 1-18, February.
    9. Raquel Martinez & Pablo Castro & Alberto Arroyo & Mario Manana & Noemi Galan & Fidel Simon Moreno & Sergio Bustamante & Alberto Laso, 2022. "Techniques to Locate the Origin of Power Quality Disturbances in a Power System: A Review," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    10. Guoqing Weng & Feiteng Huang & Jun Yan & Xiaodong Yang & Youbing Zhang & Haibo He, 2016. "A Fault-Tolerant Location Approach for Transient Voltage Disturbance Source Based on Information Fusion," Energies, MDPI, vol. 9(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8319-8338:d:53784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.