IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4184-d1150432.html
   My bibliography  Save this article

Modeling of Electrical Systems for Uninterrupted Operation of Drives in Case of Short-Term Distortions in the Supply Networks

Author

Listed:
  • Valery Pupin

    (NPK Promir Limited Liability Company, Storozhevaya Street, 26, Bilding 1, 111020 Moscow, Russia)

  • Victor Orlov

    (Institute of Digital Technologies and Modeling in Construction, Moscow State University of Civil Engineering, Yaroslavskoye Shosse, 26, 129337 Moscow, Russia)

Abstract

The article considers the problem of increasing the stability of an electrical system with running synchronous and asynchronous electric motors, which are electrically connected through an intra-factory network and for which the operating modes affect the stability of the entire load. A method is proposed for studying electrical systems with an electric motor load to assess the effect of short-term power supply interruptions (voltage dips) in supply networks on the dynamic stability of synchronous and asynchronous drives. The influence of considering operating synchronous and asynchronous electric motors on transient processes and levels of residual voltages of sections was studied. It was found that to ensure the stability of the drives, to avoid shutdowns in case of various types of short circuits, it is desirable to use an automatic reserve input with a response time of less than 12 ms. A device for the instantaneous activation of a reserve is proposed, providing a response time of 9 ms and a total switching time to a reserve input within 17 ÷ 65 ms. The results of experiments and calculations according to the author’s developed programs are presented, confirming the possibility of the uninterrupted operation of technical electric systems consumers. The requirements for such automation devices are determined.

Suggested Citation

  • Valery Pupin & Victor Orlov, 2023. "Modeling of Electrical Systems for Uninterrupted Operation of Drives in Case of Short-Term Distortions in the Supply Networks," Energies, MDPI, vol. 16(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4184-:d:1150432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horia Gheorghe Beleiu & Ioana Natalia Beleiu & Sorin Gheorghe Pavel & Cosmin Pompei Darab, 2018. "Management of Power Quality Issues from an Economic Point of View," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    2. Édison Massao Motoki & José Maria de Carvalho Filho & Paulo Márcio da Silveira & Natanael Barbosa Pereira & Paulo Vitor Grillo de Souza, 2021. "Cost of Industrial Process Shutdowns Due to Voltage Sag and Short Interruption," Energies, MDPI, vol. 14(10), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Buła & Jarosław Michalak & Marcin Zygmanowski & Tomasz Adrikowski & Grzegorz Jarek & Michał Jeleń, 2021. "Control Strategy of 1 kV Hybrid Active Power Filter for Mining Applications," Energies, MDPI, vol. 14(16), pages 1-25, August.
    2. Rosalia Sinvula & Khaled Mohamed Abo-Al-Ez & Mohamed Tariq Kahn, 2020. "A Proposed Harmonic Monitoring System for Large Power Users Considering Harmonic Limits," Energies, MDPI, vol. 13(17), pages 1-18, September.
    3. Xiaohan Guo & Yong Li & Shaoyang Wang & Yijia Cao & Mingmin Zhang & Yicheng Zhou & Nakanishi Yosuke, 2021. "A Comprehensive Weight-Based Severity Evaluation Method of Voltage Sag in Distribution Networks," Energies, MDPI, vol. 14(19), pages 1-13, October.
    4. Yonghai Xu & Xingguan Fan & Siying Deng & Chunhao Niu, 2021. "A Voltage Sag Severity Evaluation Method for the System Side Which Considers the Influence of the Voltage Tolerance Curve and Sag Type," Energies, MDPI, vol. 14(16), pages 1-22, August.
    5. Fei Mei & Yong Ren & Qingliang Wu & Chenyu Zhang & Yi Pan & Haoyuan Sha & Jianyong Zheng, 2018. "Online Recognition Method for Voltage Sags Based on a Deep Belief Network," Energies, MDPI, vol. 12(1), pages 1-16, December.
    6. Gabriel Nicolae Popa, 2022. "Electric Power Quality through Analysis and Experiment," Energies, MDPI, vol. 15(21), pages 1-14, October.
    7. Mihai Rata & Gabriela Rata & Constantin Filote & Maria Simona Raboaca & Adrian Graur & Ciprian Afanasov & Andreea-Raluca Felseghi, 2019. "The ElectricalVehicle Simulator for Charging Station in Mode 3 of IEC 61851-1 Standard," Energies, MDPI, vol. 13(1), pages 1-10, December.
    8. Abbas Marini & Luigi Piegari & S-Saeedallah Mortazavi & Mohammad-S Ghazizadeh, 2020. "Coordinated Operation of Energy Storage Systems for Distributed Harmonic Compensation in Microgrids," Energies, MDPI, vol. 13(3), pages 1-22, February.
    9. Jagannath Patra & Nitai Pal, 2022. "A Mathematical Approach of Voltage Sag Analysis Incorporating Bivariate Probability Distribution in a Meshed System," Energies, MDPI, vol. 15(20), pages 1-19, October.
    10. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.
    11. Ahammed, Md. Tanvir & Khan, Imran, 2022. "Ensuring power quality and demand-side management through IoT-based smart meters in a developing country," Energy, Elsevier, vol. 250(C).
    12. Michele Zanoni & Riccardo Chiumeo & Liliana Tenti & Massimo Volta, 2023. "What Else Do the Deep Learning Techniques Tell Us about Voltage Dips Validity? Regional-Level Assessments with the New QuEEN System Based on Real Network Configurations," Energies, MDPI, vol. 16(3), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4184-:d:1150432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.