IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i12p2096-2115.html
   My bibliography  Save this article

Effect of different load profiles on the loss-of-load probability of stand-alone photovoltaic systems

Author

Listed:
  • Celik, A.N.

Abstract

As well as the technical design criteria, the performance of a stand-alone photovoltaic (PV) system depends on other variables, such as the solar radiation distribution and load profile. Different load profiles are encountered in stand-alone PV applications. Load profiles may vary from 24-h constant to only nighttime or oppositely only daytime load profiles. This article presents results of system performance simulations for analysing the effect of different load profiles on the system performance. The load demand used in this article is appropriate for an average residential application with an average 9.4kWh of daily energy demand. The loss-of-load probability (LLP) of the PV system is simulated for five different weekly load profiles and the results are examined based on techno-economic parameters, including the total system cost or alternatively the cost of electricity per kWh for a 20-year system lifetime. The results are drawn based on 1-year long hourly time-series solar radiation and ambient temperature data.

Suggested Citation

  • Celik, A.N., 2007. "Effect of different load profiles on the loss-of-load probability of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 32(12), pages 2096-2115.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:12:p:2096-2115
    DOI: 10.1016/j.renene.2006.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106003296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bakos, G. C. & Soursos, M., 2002. "Techno-economic assessment of a stand-alone PV/hybrid installation for low-cost electrification of a tourist resort in Greece," Applied Energy, Elsevier, vol. 73(2), pages 183-193, October.
    2. Yang, H.X. & Lu, L. & Burnett, J., 2003. "Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong," Renewable Energy, Elsevier, vol. 28(11), pages 1813-1824.
    3. Duke, Richard & Williams, Robert & Payne, Adam, 2005. "Accelerating residential PV expansion: demand analysis for competitive electricity markets," Energy Policy, Elsevier, vol. 33(15), pages 1912-1929, October.
    4. Ahmad, G.E. & Hussein, H.M.S. & El-Ghetany, H.H., 2003. "Theoretical analysis and experimental verification of PV modules," Renewable Energy, Elsevier, vol. 28(8), pages 1159-1168.
    5. Ai, B. & Yang, H. & Shen, H. & Liao, X., 2003. "Computer-aided design of PV/wind hybrid system," Renewable Energy, Elsevier, vol. 28(10), pages 1491-1512.
    6. Gabler, Hansjörg, 1998. "Autonomous power supply with photovoltaics: Photovoltaics for rural electrification - reality and vision," Renewable Energy, Elsevier, vol. 15(1), pages 512-518.
    7. Hove, Tawanda, 2000. "A method for predicting long-term average performance of photovoltaic systems," Renewable Energy, Elsevier, vol. 21(2), pages 207-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    2. Haytham El-houari & Amine Allouhi & Shafiqur Rehman & Mahmut Sami Buker & Tarik Kousksou & Abdelmajid Jamil & Bouchta El Amrani, 2019. "Design, Simulation, and Economic Optimization of an Off-Grid Photovoltaic System for Rural Electrification," Energies, MDPI, vol. 12(24), pages 1-16, December.
    3. Thiaux, Y. & Seigneurbieux, J. & Multon, B. & Ben Ahmed, H., 2010. "Load profile impact on the gross energy requirement of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(3), pages 602-613.
    4. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao, 2017. "Research and current status of the solar photovoltaic water pumping system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 440-458.
    5. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    6. Ghafoor, Abdul & Munir, Anjum, 2015. "Design and economics analysis of an off-grid PV system for household electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 496-502.
    7. Volkanovski, Andrija, 2017. "Wind generation impact on electricity generation adequacy and nuclear safety," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 85-92.
    8. Jane Namaganda-Kiyimba & Joseph Mutale & Brian Azzopardi, 2021. "Improving the Load Estimation Process in the Design of Rural Electrification Systems," Energies, MDPI, vol. 14(17), pages 1-23, September.
    9. Kosai, Shoki & Unesaki, Hironobu, 2017. "Quantitative analysis on the impact of nuclear energy supply disruption on electricity supply security," Applied Energy, Elsevier, vol. 208(C), pages 1198-1207.
    10. Kosai, Shoki & Yamasue, Eiji, 2018. "Cost-security analysis dedicated for the off-grid electricity system," Renewable Energy, Elsevier, vol. 115(C), pages 871-879.
    11. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2011. "Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 36(11), pages 2809-2821.
    12. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    13. Kamali, Saeed, 2016. "Feasibility analysis of standalone photovoltaic electrification system in a residential building in Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1279-1284.
    14. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2011. "Development of IREOM model based on seasonally varying load profile for hilly remote areas of Uttarakhand state in India," Energy, Elsevier, vol. 36(9), pages 5690-5702.
    15. Benavente, Fabian & Lundblad, Anders & Campana, Pietro Elia & Zhang, Yang & Cabrera, Saúl & Lindbergh, Göran, 2019. "Photovoltaic/battery system sizing for rural electrification in Bolivia: Considering the suppressed demand effect," Applied Energy, Elsevier, vol. 235(C), pages 519-528.
    16. Hamidat, A. & Benyoucef, B., 2009. "Systematic procedures for sizing photovoltaic pumping system, using water tank storage," Energy Policy, Elsevier, vol. 37(4), pages 1489-1501, April.
    17. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive decoupled control of 4-leg voltage-source inverters for standalone photovoltaic systems: Adjusting transient state response," Renewable Energy, Elsevier, vol. 36(10), pages 2733-2741.
    18. Shoki Kosai & Chia Kwang Tan & Eiji Yamasue, 2018. "Evaluating Power Reliability Dedicated for Sudden Disruptions: Its Application to Determine Capacity on the Basis of Energy Security," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    19. Nasiri, Reza & Radan, Ahmad, 2011. "Pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems: Considering digital delays," Renewable Energy, Elsevier, vol. 36(2), pages 858-865.
    20. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid," Applied Energy, Elsevier, vol. 190(C), pages 232-248.
    21. Perera, A.T.D. & Zhao, Bingyu & Wang, Zhe & Soga, Kenichi & Hong, Tianzhen, 2023. "Optimal design of microgrids to improve wildfire resilience for vulnerable communities at the wildland-urban interface," Applied Energy, Elsevier, vol. 335(C).
    22. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    23. Lovati, Marco & Dallapiccola, Mattia & Adami, Jennifer & Bonato, Paolo & Zhang, Xingxing & Moser, David, 2020. "Design of a residential photovoltaic system: the impact of the demand profile and the normative framework," Renewable Energy, Elsevier, vol. 160(C), pages 1458-1467.
    24. Nakyoung Kim & Sangdon Park & Joohyung Lee & Jun Kyun Choi, 2018. "Load Profile Extraction by Mean-Shift Clustering with Sample Pearson Correlation Coefficient Distance," Energies, MDPI, vol. 11(9), pages 1-20, September.
    25. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems," Renewable Energy, Elsevier, vol. 36(7), pages 2032-2042.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Celik, Ali Naci & Muneer, Tariq & Clarke, Peter, 2009. "A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15," Renewable Energy, Elsevier, vol. 34(3), pages 849-856.
    2. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    3. Celik, Ali Naci, 2006. "Present status of photovoltaic energy in Turkey and life cycle techno-economic analysis of a grid-connected photovoltaic-house," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 370-387, August.
    4. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    5. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    6. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    7. Thapar, Vinay & Agnihotri, Gayatri & Sethi, Vinod Krishna, 2011. "Critical analysis of methods for mathematical modelling of wind turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3166-3177.
    8. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    9. Ekren, Orhan & Ekren, Banu Y. & Ozerdem, Baris, 2009. "Break-even analysis and size optimization of a PV/wind hybrid energy conversion system with battery storage - A case study," Applied Energy, Elsevier, vol. 86(7-8), pages 1043-1054, July.
    10. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2009. "A current and future state of art development of hybrid energy system using wind and PV-solar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2096-2103, October.
    11. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2022. "Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach," Clean Technol., MDPI, vol. 4(2), pages 1-25, June.
    12. repec:wut:journl:v:2:y:2013:id:1085 is not listed on IDEAS
    13. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    14. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    15. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    16. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    17. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    18. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    19. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    20. Zhao, Zhen-yu & Zhang, Shuang-ying & Zuo, Jian, 2011. "A critical analysis of the photovoltaic power industry in China – From diamond model to gear model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4963-4971.
    21. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:12:p:2096-2115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.