IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v188y2017icp19-31.html
   My bibliography  Save this article

A framework for evaluating global national energy security

Author

Listed:
  • Wang, Qiang
  • Zhou, Kan

Abstract

Unlike most ES evaluation frameworks in the literature, this study provides a new evaluation technique based on the integrated application of subjective and objective weight allocation methods—SOWA (Subjective & Objective Weight Allocation), and introduces a balance score matrix (BSM) highlighting how well a country manages the trade-offs between the three competing dimensions for evaluating global national energy security. The results show that countries are struggling to develop a comprehensively secure energy system, with only one country out of 162 achieving an ‘Excellent’ score and 37 countries achieving a ‘Good’ score, together accounting for approximately one-fourth of the sampled countries. Meanwhile, the spatial disparity in the global performance of national ES is very significant: ‘Excellent’ and ‘Good’ groups are concentrated in Western Europe and North America, while the ‘Limited’ are concentrated in Europe, Middle East and Asia; the ‘Weak’ and ‘Poor’ groups are concentrated in Africa and Asia. Overall, this proposed framework allows for the quick identification of deficiencies within three dimensions in the ES context by pinpointing the main weaknesses. The study also offers suggestions for improving the performance of countries in different categories.

Suggested Citation

  • Wang, Qiang & Zhou, Kan, 2017. "A framework for evaluating global national energy security," Applied Energy, Elsevier, vol. 188(C), pages 19-31.
  • Handle: RePEc:eee:appene:v:188:y:2017:i:c:p:19-31
    DOI: 10.1016/j.apenergy.2016.11.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jinsoo & Kim, Jihyo, 2015. "Korean public’s perceptions on supply security of fossil fuels: A contingent valuation analysis," Applied Energy, Elsevier, vol. 137(C), pages 301-309.
    2. Kisel, Einari & Hamburg, Arvi & Härm, Mihkel & Leppiman, Ando & Ots, Märt, 2016. "Concept for Energy Security Matrix," Energy Policy, Elsevier, vol. 95(C), pages 1-9.
    3. Bang, Guri, 2010. "Energy security and climate change concerns: Triggers for energy policy change in the United States?," Energy Policy, Elsevier, vol. 38(4), pages 1645-1653, April.
    4. Cohen, Gail & Joutz, Frederick & Loungani, Prakash, 2011. "Measuring energy security: Trends in the diversification of oil and natural gas supplies," Energy Policy, Elsevier, vol. 39(9), pages 4860-4869, September.
    5. Mazur, Allan, 2011. "Does increasing energy or electricity consumption improve quality of life in industrial nations?," Energy Policy, Elsevier, vol. 39(5), pages 2568-2572, May.
    6. Narula, Kapil & Sudhakara Reddy, B. & Pachauri, Shonali, 2017. "Sustainable Energy Security for India: An assessment of energy demand sub-system," Applied Energy, Elsevier, vol. 186(P2), pages 126-139.
    7. Goldthau, Andreas & Sovacool, Benjamin K., 2012. "The uniqueness of the energy security, justice, and governance problem," Energy Policy, Elsevier, vol. 41(C), pages 232-240.
    8. Narula, Kapil & Sudhakara Reddy, B. & Pachauri, Shonali & Mahendra Dev, S., 2017. "Sustainable energy security for India: An assessment of the energy supply sub-system," Energy Policy, Elsevier, vol. 103(C), pages 127-144.
    9. Yao, Lixia & Chang, Youngho, 2014. "Energy security in China: A quantitative analysis and policy implications," Energy Policy, Elsevier, vol. 67(C), pages 595-604.
    10. Badea, Anca Costescu & Rocco S., Claudio M. & Tarantola, Stefano & Bolado, Ricardo, 2011. "Composite indicators for security of energy supply using ordered weighted averaging," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 651-662.
    11. Winzer, Christian, 2012. "Conceptualizing energy security," Energy Policy, Elsevier, vol. 46(C), pages 36-48.
    12. Kapil Narula & B. Sudhakara Reddy & Shonali Pachauri, 2015. "Sustainable energy security for India: An assessment of energy demand sub-system," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2015-013, Indira Gandhi Institute of Development Research, Mumbai, India.
    13. Augutis, Juozas & Krikstolaitis, Ricardas & Martisauskas, Linas & Peciulyte, Sigita, 2012. "Energy security level assessment technology," Applied Energy, Elsevier, vol. 97(C), pages 143-149.
    14. Barry Naughten, 2008. "Asia's rising complex energy interdependence," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 29(4), pages 400-433.
    15. Filis, George & Degiannakis, Stavros & Floros, Christos, 2011. "Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 152-164, June.
    16. Sandbrook, Richard, 1986. "The state and economic stagnation in Tropical Africa," World Development, Elsevier, vol. 14(3), pages 319-332, March.
    17. Gupta, Eshita, 2008. "Oil vulnerability index of oil-importing countries," Energy Policy, Elsevier, vol. 36(3), pages 1195-1211, March.
    18. Cabalu, Helen, 2010. "Indicators of security of natural gas supply in Asia," Energy Policy, Elsevier, vol. 38(1), pages 218-225, January.
    19. Sovacool, Benjamin K. & Brown, Marilyn A., 2010. "Twelve metropolitan carbon footprints: A preliminary comparative global assessment," Energy Policy, Elsevier, vol. 38(9), pages 4856-4869, September.
    20. Martchamadol, Jutamanee & Kumar, S., 2012. "Thailand's energy security indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6103-6122.
    21. Chang, Youngho & Yong, Jiayun, 2007. "Differing perspectives of major oil firms on future energy developments: An illustrative framework," Energy Policy, Elsevier, vol. 35(11), pages 5466-5480, November.
    22. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    23. Kemmler, Andreas & Spreng, Daniel, 2007. "Energy indicators for tracking sustainability in developing countries," Energy Policy, Elsevier, vol. 35(4), pages 2466-2480, April.
    24. Tongsopit, Sopitsuda & Kittner, Noah & Chang, Youngho & Aksornkij, Apinya & Wangjiraniran, Weerin, 2016. "Energy security in ASEAN: A quantitative approach for sustainable energy policy," Energy Policy, Elsevier, vol. 90(C), pages 60-72.
    25. Gnansounou, Edgard, 2008. "Assessing the energy vulnerability: Case of industrialised countries," Energy Policy, Elsevier, vol. 36(10), pages 3734-3744, October.
    26. Vivoda, Vlado, 2010. "Evaluating energy security in the Asia-Pacific region: A novel methodological approach," Energy Policy, Elsevier, vol. 38(9), pages 5258-5263, September.
    27. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "A framework for evaluating Singapore’s energy security," Applied Energy, Elsevier, vol. 148(C), pages 314-325.
    28. Chester, Lynne, 2010. "Conceptualising energy security and making explicit its polysemic nature," Energy Policy, Elsevier, vol. 38(2), pages 887-895, February.
    29. Hughes, Larry, 2009. "The four 'R's of energy security," Energy Policy, Elsevier, vol. 37(6), pages 2459-2461, June.
    30. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    31. Marti­nez, Daniel M. & Ebenhack, Ben W., 2008. "Understanding the role of energy consumption in human development through the use of saturation phenomena," Energy Policy, Elsevier, vol. 36(4), pages 1430-1435, April.
    32. Bielecki, J., 2002. "Energy security: is the wolf at the door?," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(2), pages 235-250.
    33. Thangavelu, Sundar Raj & Khambadkone, Ashwin M. & Karimi, Iftekhar A., 2015. "Long-term optimal energy mix planning towards high energy security and low GHG emission," Applied Energy, Elsevier, vol. 154(C), pages 959-969.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    2. Thauan Santos & Amaro Olímpio Pereira Júnior & Emilio Lèbre La Rovere, 2017. "Evaluating Energy Policies through the Use of a Hybrid Quantitative Indicator-Based Approach: The Case of Mercosur," Energies, MDPI, vol. 10(12), pages 1-15, December.
    3. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    4. Song, Yan & Zhang, Ming & Sun, Ruifeng, 2019. "Using a new aggregated indicator to evaluate China's energy security," Energy Policy, Elsevier, vol. 132(C), pages 167-174.
    5. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    6. Karatayev, Marat & Hall, Stephen, 2020. "Establishing and comparing energy security trends in resource-rich exporting nations (Russia and the Caspian Sea region)," Resources Policy, Elsevier, vol. 68(C).
    7. Gong, Xu & Wang, You & Lin, Boqiang, 2021. "Assessing dynamic China’s energy security: Based on functional data analysis," Energy, Elsevier, vol. 217(C).
    8. Kang, Duan, 2024. "The establishment of evaluation systems and an index for energy superpower," Applied Energy, Elsevier, vol. 356(C).
    9. Radovanović, Mirjana & Filipović, Sanja & Pavlović, Dejan, 2017. "Energy security measurement – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1020-1032.
    10. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    11. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    12. Tete, Komlan H.S. & Soro, Y.M. & Sidibé, S.S. & Jones, Rory V., 2023. "Assessing energy security within the electricity sector in the West African economic and monetary union: Inter-country performances and trends analysis with policy implications," Energy Policy, Elsevier, vol. 173(C).
    13. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
    14. Mu Li & Li Li & Wadim Strielkowski, 2019. "The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China," Energies, MDPI, vol. 12(11), pages 1-22, June.
    15. Le, Thai-Ha & Chang, Youngho & Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki, 2019. "Energy insecurity in Asia: A multi-dimensional analysis," Economic Modelling, Elsevier, vol. 83(C), pages 84-95.
    16. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    17. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    18. Stempien, J.P. & Chan, S.H., 2017. "Addressing energy trilemma via the modified Markowitz Mean-Variance Portfolio Optimization theory," Applied Energy, Elsevier, vol. 202(C), pages 228-237.
    19. Pin Li & Jin-Suo Zhang, 2018. "A New Hybrid Method for China’s Energy Supply Security Forecasting Based on ARIMA and XGBoost," Energies, MDPI, vol. 11(7), pages 1-28, June.
    20. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:188:y:2017:i:c:p:19-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.