IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i1p193-d126987.html
   My bibliography  Save this article

Sustainability of the Reanalysis Databases in Predicting the Wind and Wave Power along the European Coasts

Author

Listed:
  • Florin Onea

    (Department of Mechanical Engineering, Faculty of Engineering, “Dunărea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania)

  • Eugen Rusu

    (Department of Mechanical Engineering, Faculty of Engineering, “Dunărea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania)

Abstract

In the present work, the wind and wave conditions in the European nearshore are assessed considering a total of 118 years of data, covering the time interval from 1900 to 2017. In this context, special attention has been given to the western European coasts that are facing the ocean. In order to do this, the reanalysis data coming from three state-of-the-art databases (ERA Interim, ERA20C, and NCEP) were processed. Furthermore, a more complete picture was provided by also including the satellite measurements coming from the AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic Data) project in the analysis. From this perspective, the distribution of the two marine energy resources was discussed, which throughout energetic maps—and further, on some specific reference sites—were defined at a distance of 50 km from the shore for more detailed analysis and comparison. As expected, the places located in the vicinity of the United Kingdom present more important energy resources, but some other interesting sites were also highlighted. Furthermore, although each dataset is defined by particular features, there is a similar pattern in the identification of the sites’ attractiveness, regardless of the database considered for assessment.

Suggested Citation

  • Florin Onea & Eugen Rusu, 2018. "Sustainability of the Reanalysis Databases in Predicting the Wind and Wave Power along the European Coasts," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:193-:d:126987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/1/193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/1/193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalogeri, Christina & Galanis, George & Spyrou, Christos & Diamantis, Dimitris & Baladima, Foteini & Koukoula, Marika & Kallos, George, 2017. "Assessing the European offshore wind and wave energy resource for combined exploitation," Renewable Energy, Elsevier, vol. 101(C), pages 244-264.
    2. Liberti, Luca & Carillo, Adriana & Sannino, Gianmaria, 2013. "Wave energy resource assessment in the Mediterranean, the Italian perspective," Renewable Energy, Elsevier, vol. 50(C), pages 938-949.
    3. Rusu, Eugen & Onea, Florin, 2016. "Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands," Renewable Energy, Elsevier, vol. 85(C), pages 687-703.
    4. Eugen Rusu, 2014. "Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments," Energies, MDPI, vol. 7(6), pages 1-17, June.
    5. Rusu, Liliana & Onea, Florin, 2015. "Assessment of the performances of various wave energy converters along the European continental coasts," Energy, Elsevier, vol. 82(C), pages 889-904.
    6. Emmanouil, George & Galanis, George & Kalogeri, Christina & Zodiatis, George & Kallos, George, 2016. "10-year high resolution study of wind, sea waves and wave energy assessment in the Greek offshore areas," Renewable Energy, Elsevier, vol. 90(C), pages 399-419.
    7. Soukissian, Takvor H. & Papadopoulos, Anastasios, 2015. "Effects of different wind data sources in offshore wind power assessment," Renewable Energy, Elsevier, vol. 77(C), pages 101-114.
    8. Onea, Florin & Rusu, Eugen, 2016. "The expected efficiency and coastal impact of a hybrid energy farm operating in the Portuguese nearshore," Energy, Elsevier, vol. 97(C), pages 411-423.
    9. Liliana Rusu, 2015. "Assessment of the Wave Energy in the Black Sea Based on a 15-Year Hindcast with Data Assimilation," Energies, MDPI, vol. 8(9), pages 1-19, September.
    10. Eugen Rusu & Florin Onea, 2017. "Joint Evaluation of the Wave and Offshore Wind Energy Resources in the Developing Countries," Energies, MDPI, vol. 10(11), pages 1-20, November.
    11. Iglesias, G. & Carballo, R., 2010. "Wave energy and nearshore hot spots: The case of the SE Bay of Biscay," Renewable Energy, Elsevier, vol. 35(11), pages 2490-2500.
    12. Rusu, Liliana & Onea, Florin, 2017. "The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1348-1362.
    13. Omrani, Hiba & Drobinski, Philippe & Arsouze, Thomas & Bastin, Sophie & Lebeaupin-Brossier, Cindy & Mailler, Sylvain, 2017. "Spatial and temporal variability of wind energy resource and production over the North Western Mediterranean Sea: Sensitivity to air-sea interactions," Renewable Energy, Elsevier, vol. 101(C), pages 680-689.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulazia, Alain & Esnaola, Ganix & Serras, Paula & Penalba, Markel, 2020. "On the impact of long-term wave trends on the geometry optimisation of oscillating water column wave energy converters," Energy, Elsevier, vol. 206(C).
    2. Rusu, Eugen, 2019. "A 30-year projection of the future wind energy resources in the coastal environment of the Black Sea," Renewable Energy, Elsevier, vol. 139(C), pages 228-234.
    3. Rusu, Eugen, 2024. "The expected wind power dynamics in the Mediterranean Sea considering different climate change scenarios," Renewable Energy, Elsevier, vol. 227(C).
    4. Hamza S. Abdalla Lagili & Aşkın Kiraz & Youssef Kassem & Hüseyin Gökçekuş, 2023. "Wind and Solar Energy for Sustainable Energy Production for Family Farms in Coastal Agricultural Regions of Libya Using Measured and Multiple Satellite Datasets," Energies, MDPI, vol. 16(18), pages 1-53, September.
    5. Liliana Rusu & Eugen Rusu, 2021. "Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements," Energies, MDPI, vol. 14(2), pages 1-16, January.
    6. Victoria Yildirir & Eugen Rusu & Florin Onea, 2022. "Wind Energy Assessments in the Northern Romanian Coastal Environment Based on 20 Years of Data Coming from Different Sources," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    7. Rusu, Eugen, 2020. "An evaluation of the wind energy dynamics in the Baltic Sea, past and future projections," Renewable Energy, Elsevier, vol. 160(C), pages 350-362.
    8. Rusu, Eugen, 2022. "Assessment of the wind power dynamics in the North Sea under climate change conditions," Renewable Energy, Elsevier, vol. 195(C), pages 466-475.
    9. Florin Onea & Liliana Rusu, 2018. "Evaluation of Some State-Of-The-Art Wind Technologies in the Nearshore of the Black Sea," Energies, MDPI, vol. 11(9), pages 1-16, September.
    10. Alina Beatrice Răileanu & Liliana Rusu & Eugen Rusu, 2023. "An Evaluation of the Dynamics of Some Meteorological and Hydrological Processes along the Lower Danube," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    11. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.
    12. Karol Kostúr & Marek Laciak & Milan Durdan, 2018. "Some Influences of Underground Coal Gasification on the Environment," Sustainability, MDPI, vol. 10(5), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eugen Rusu & Florin Onea, 2017. "Joint Evaluation of the Wave and Offshore Wind Energy Resources in the Developing Countries," Energies, MDPI, vol. 10(11), pages 1-20, November.
    2. Rusu, Eugen & Onea, Florin, 2019. "A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments," Renewable Energy, Elsevier, vol. 143(C), pages 1594-1607.
    3. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    4. Rusu, Eugen & Onea, Florin, 2019. "An assessment of the wind and wave power potential in the island environment," Energy, Elsevier, vol. 175(C), pages 830-846.
    5. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    6. Daniel Ganea & Valentin Amortila & Elena Mereuta & Eugen Rusu, 2017. "A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    7. Rusu, Liliana, 2019. "The wave and wind power potential in the western Black Sea," Renewable Energy, Elsevier, vol. 139(C), pages 1146-1158.
    8. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    9. Vázquez, Rubén & Cabos, William & Nieto-Borge, José Carlos & Gutiérrez, Claudia, 2024. "Complementarity of offshore energy resources on the Spanish coasts: Wind, wave, and photovoltaic energy," Renewable Energy, Elsevier, vol. 224(C).
    10. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    11. Rusu, Liliana & Onea, Florin, 2017. "The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1348-1362.
    12. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Guillou, Nicolas & Chapalain, Georges, 2018. "Annual and seasonal variabilities in the performances of wave energy converters," Energy, Elsevier, vol. 165(PB), pages 812-823.
    14. Rusu, Liliana, 2020. "A projection of the expected wave power in the Black Sea until the end of the 21st century," Renewable Energy, Elsevier, vol. 160(C), pages 136-147.
    15. Rusu, Eugen, 2022. "Assessment of the wind power dynamics in the North Sea under climate change conditions," Renewable Energy, Elsevier, vol. 195(C), pages 466-475.
    16. Majidi, Ajab Gul & Bingölbali, Bilal & Akpınar, Adem & Rusu, Eugen, 2021. "Wave power performance of wave energy converters at high-energy areas of a semi-enclosed sea," Energy, Elsevier, vol. 220(C).
    17. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    18. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Ulazia, Alain & Esnaola, Ganix & Serras, Paula & Penalba, Markel, 2020. "On the impact of long-term wave trends on the geometry optimisation of oscillating water column wave energy converters," Energy, Elsevier, vol. 206(C).
    20. Evangelia Dialyna & Theocharis Tsoutsos, 2021. "Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:193-:d:126987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.