IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4331-d184565.html
   My bibliography  Save this article

Investigating Key Factors Influencing Farming Decisions Based on Soil Testing and Fertilizer Recommendation Facilities (STFRF)—A Case Study on Rural Bangladesh

Author

Listed:
  • Faruque-As-Sunny

    (School of Public Administration, Zhejiang University, Hangzhou 310058, Zhejiang, China)

  • Zuhui Huang

    (School of Public Administration, Zhejiang University, Hangzhou 310058, Zhejiang, China)

  • Taonarufaro Tinaye Pemberai Karimanzira

    (School of Nontraditional Security Studies, Zhejiang University, Hangzhou 310058, Zhejiang, China)

Abstract

Proper nourishment is fundamental for satisfactory crop growth and production. However, for efficient crop production, it is important to understand the soil environment, to recognize the limitations of that environment, and to ameliorate them where possible without damaging the soil quality. Soil testing and fertilizer recommendation facilities (STFRF) can help farmers to achieve environmental and economic sustainability by assisting them in recognizing their soil condition, reducing agrochemicals usage, using an appropriate amount of fertilizer, minimizing input costs, and achieving higher yield. These facilities are not new in the context of Bangladesh, yet the adoption rate among farmers is low and its determinants have rarely been empirically tested based on microlevel data. Therefore, this study examined those factors underlying the adoption of soil testing and fertilizer recommendation facilities using field surveyed data of 176 individual farmers. Our evidence shows that young farmers with less farming experience are more likely to adopt these facilities. Additionally, being small-scale farmers, having higher education, having more farming income, and having more knowledge about these facilities and the fees of these facilities were found to have a significant effect on the adoption. On the other hand, gender, land ownership, and secondary income were found to be insignificant with regard to the adoption of soil testing and fertilizer recommendation facilities. Our results also revealed that most adopter farmers not only focused on profitability, but were additionally concerned with environmental well-being.

Suggested Citation

  • Faruque-As-Sunny & Zuhui Huang & Taonarufaro Tinaye Pemberai Karimanzira, 2018. "Investigating Key Factors Influencing Farming Decisions Based on Soil Testing and Fertilizer Recommendation Facilities (STFRF)—A Case Study on Rural Bangladesh," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4331-:d:184565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bairagi, Subir K. & Bhandari, Humnath & Das, Subrata & Mohanty, Samarendu, 2018. "Impact of Submergence-Tolerant Rice Varieties on Smallholders’ Income and Expenditure: Farm-Level Evidence from Bangladesh," 2018 Annual Meeting, August 5-7, Washington, D.C. 274356, Agricultural and Applied Economics Association.
    2. Boureima Yacouba Karidjo & Zhanqi Wang & Yamba Boubacar & Chao Wei, 2018. "Factors Influencing Farmers’ Adoption of Soil and Water Control Technology (SWCT) in Keita Valley, a Semi-Arid Area of Niger," Sustainability, MDPI, vol. 10(2), pages 1-13, January.
    3. Simtowe, Franklin & Zeller, Manfred, 2006. "The Impact of Access to Credit on the Adoption of hybrid maize in Malawi: An Empirical test of an Agricultural Household Model under credit market failure," MPRA Paper 45, University Library of Munich, Germany.
    4. Patrick S. Ward & Valerien O. Pede, 2015. "Capturing social network effects in technology adoption: the spatial diffusion of hybrid rice in Bangladesh," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), pages 225-241, April.
    5. John Strauss & Mariza Barbosa & Sonia Teixeira & Duncan Thomas & Raimundo Gomes Junior, 1991. "Role of education and extension in the adoption of technology: a study of upland rice and soybean farmers in Central‐West Brazil," Agricultural Economics, International Association of Agricultural Economists, vol. 5(4), pages 341-359, August.
    6. Foster, Andrew D & Rosenzweig, Mark R, 1995. "Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture," Journal of Political Economy, University of Chicago Press, vol. 103(6), pages 1176-1209, December.
    7. Rajagopal, 2014. "Technology Diffusion and Adoption," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 6, pages 148-173, Palgrave Macmillan.
    8. Caswell, Margriet & Fuglie, Keith O. & Ingram, Cassandra & Jans, Sharon & Kascak, Catherine, 2001. "Adoption of Agricultural Production Practices: Lessons Learned from the U.S. Department of Agriculture Area Studies Project," Agricultural Economic Reports 33985, United States Department of Agriculture, Economic Research Service.
    9. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    10. Gershon Feder & Roger Slade, 1984. "The Acquisition of Information and the Adoption of New Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 312-320.
    11. Kevin F. McCardle, 1985. "Information Acquisition and the Adoption of New Technology," Management Science, INFORMS, vol. 31(11), pages 1372-1389, November.
    12. Zeng, Di & Alwang, Jeffrey Roger & Norton, George & Shiferaw, Bekele & Jaleta, Moti & Yirga, Chilot, 2014. "Agricultural Technology Adoption and Child Nutrition: Improved Maize Varieties in Rural Ethiopia," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 171427, Agricultural and Applied Economics Association.
    13. Brian W. Gould & William E. Saupe & Richard M. Klemme, 1989. "Conservation Tillage: The Role of Farm and Operator Characteristics and the Perception of Soil Erosion," Land Economics, University of Wisconsin Press, vol. 65(2), pages 167-185.
    14. Uddin, A.B.M. Sharif & Rahman, M. Mostafizur & Alam, M. Bashirul & Kamaly, M. Hasanul Kabir, 2014. "Factors Contribution To The Adoption Of Production Technologies By Potato Growers In Northwest Bangladesh," Journal of Agribusiness and Rural Development, University of Life Sciences, Poznan, Poland, vol. 33(3).
    15. Lambrecht, Isabel & Vanlauwe, Bernard & Merckx, Roel & Maertens, Miet, 2014. "Understanding the Process of Agricultural Technology Adoption: Mineral Fertilizer in Eastern DR Congo," World Development, Elsevier, vol. 59(C), pages 132-146.
    16. Howard D. Leathers & Melinda Smale, 1991. "A Bayesian Approach to Explaining Sequential Adoption of Components of a Technological Package," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 734-742.
    17. Davies, Stephen W., 1979. "Inter-firm diffusion of process innovations," European Economic Review, Elsevier, vol. 12(4), pages 299-317, October.
    18. Njabulo Lloyd Ntshangase & Brian Muroyiwa & Melusi Sibanda, 2018. "Farmers’ Perceptions and Factors Influencing the Adoption of No-Till Conservation Agriculture by Small-Scale Farmers in Zashuke, KwaZulu-Natal Province," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    19. Caffey, Rex H. & Kazmierczak, Richard F., 1994. "Factors Influencing Technology Adoption in a Louisiana Aquaculture System," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 26(1), pages 264-274, July.
    20. Akter, Sonia & Rutsaert, Pieter & Luis, Joyce & Htwe, Nyo Me & San, Su Su & Raharjo, Budi & Pustika, Arlyna, 2017. "Women’s empowerment and gender equity in agriculture: A different perspective from Southeast Asia," Food Policy, Elsevier, vol. 69(C), pages 270-279.
    21. Mottaleb, Khondoker A., 2018. "Perception and adoption of a new agricultural technology: Evidence from a developing country," Technology in Society, Elsevier, vol. 55(C), pages 126-135.
    22. Ludeña, Carlos E., 2010. "Agricultural Productivity Growth, Efficiency Change and Technical Progress in Latin America and the Caribbean," IDB Publications (Working Papers) 1806, Inter-American Development Bank.
    23. Viswanath Venkatesh & Fred D. Davis, 2000. "A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Management Science, INFORMS, vol. 46(2), pages 186-204, February.
    24. Shirley Taylor & Peter A. Todd, 1995. "Understanding Information Technology Usage: A Test of Competing Models," Information Systems Research, INFORMS, vol. 6(2), pages 144-176, June.
    25. Caffey, Rex H. & Kazmierczak, Richard F., Jr., 1994. "Factors Influencing Technology Adoption In A Louisiana Aquaculture System," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 26(1), pages 1-11, July.
    26. Asfaw, Solomon & Shiferaw, Bekele & Simtowe, Franklin & Lipper, Leslie, 2012. "Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia," Food Policy, Elsevier, vol. 37(3), pages 283-295.
    27. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    28. Bhuiyan, M. S. R., 1987. "Influence Of Tenurial Status Of Land On The Adoption Of Improved Production Technology In An Area Of Bangladesh," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 10(2), pages 1-11, December.
    29. Hailu, Berihun Kassa & Abrha, Bihon Kassa & Weldegiorgis, Kibrom Aregawi, 2014. "Adoption and Impact of Agricultural Technologies on Farm Income: Evidence from Southern Tigray, Northern Ethiopia," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 2(4), pages 1-16, October.
    30. Mendola, Mariapia, 2007. "Agricultural technology adoption and poverty reduction: A propensity-score matching analysis for rural Bangladesh," Food Policy, Elsevier, vol. 32(3), pages 372-393, June.
    31. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    32. K. M. Atikur Rahman & Dunfu Zhang, 2018. "Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    33. Uematsu, Hiroki & Mishra, Ashok K., 2010. "Can Education Be a Barrier to Technology Adoption?," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61630, Agricultural and Applied Economics Association.
    34. John Herbert Ainembabazi & Johnny Mugisha, 2014. "The Role of Farming Experience on the Adoption of Agricultural Technologies: Evidence from Smallholder Farmers in Uganda," Journal of Development Studies, Taylor & Francis Journals, vol. 50(5), pages 666-679, May.
    35. Abadi Ghadim, Amir K. & Pannell, David J., 1999. "A conceptual framework of adoption of an agricultural innovation," Agricultural Economics, Blackwell, vol. 21(2), pages 145-154, October.
    36. Tessema, Yohannis Mulu & Asafu-Adjaye, John & Kassie, Menale & Mallawaarachchi, Thilak, 2016. "Do neighbours matter in technology adoption? The case of conservation tillage in northwest Ethiopia," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 11(3).
    37. Lowell Hill & Paul Kau, 1973. "Application of Multivariate Probit to a Threshold Model of Grain Dryer Purchasing Decisions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 55(1), pages 19-27.
    38. Barry K. Goodwin & Ashok K. Mishra, 2004. "Farming Efficiency and the Determinants of Multiple Job Holding by Farm Operators," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(3), pages 722-729.
    39. Doss, Cheryl R. & Morris, Michael L., 2001. "How does gender affect the adoption of agricultural innovations?: The case of improved maize technology in Ghana," Agricultural Economics, Blackwell, vol. 25(1), pages 27-39, June.
    40. Mohammad Alauddin & Clem Tisdell, 1988. "Patterns and Determinants of Adoption of High Yielding Varieties: Farm-level Evidence from Bangladesh," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 27(2), pages 183-210.
    41. Jenny C. Aker, 2011. "Dial “A” for agriculture: a review of information and communication technologies for agricultural extension in developing countries," Agricultural Economics, International Association of Agricultural Economists, vol. 42(6), pages 631-647, November.
    42. Dan Yaron & Hillary Voet & Ariel Dinar, 1992. "Innovations on Family Farms: The Nazareth Region in Israel," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(2), pages 361-370.
    43. Berhe Gebregewergs Hagos & Muuz Hadush, 2017. "Does Improved Wheat Seed Adoption Benefit Farmers? Empirical Evidence from Southern Tigrai, Ethiopia," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(1), pages 1-11, 01-2017.
    44. Mariano, Marc Jim & Villano, Renato & Fleming, Euan, 2012. "Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines," Agricultural Systems, Elsevier, vol. 110(C), pages 41-53.
    45. Wallace E. Huffman, 1977. "Allocative Efficiency: The Role of Human Capital," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 91(1), pages 59-79.
    46. Sarker, M.A. & Itohara, Y. & Hoque, M., . "Determinants of Adoption Decisions: The Case of Organic Farming (OF) in Bangladesh," Extension Farming Systems Journal - EFS Journal, Australasian Farm Business Management Network, vol. 5(2).
    47. Ratchaneewan Chuchird & Nophea Sasaki & Issei Abe, 2017. "Influencing Factors of the Adoption of Agricultural Irrigation Technologies and the Economic Returns: A Case Study in Chaiyaphum Province, Thailand," Sustainability, MDPI, vol. 9(9), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayat Ullah & Shahab E. Saqib & Harald Kächele, 2022. "Determinants of Farmers’ Awareness and Adoption of Extension Recommended Wheat Varieties in the Rainfed Areas of Pakistan," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    2. Caixia Xue & Tingting Zhang & Shunbo Yao & Yajun Guo, 2020. "Effects of Households’ Fertilization Knowledge and Technologies on Over-Fertilization: A Case Study of Grape Growers in Shaanxi, China," Land, MDPI, vol. 9(9), pages 1-17, September.
    3. Faruque As Sunny & Linlin Fu & Md Sadique Rahman & Zuhui Huang, 2022. "Determinants and Impact of Solar Irrigation Facility (SIF) Adoption: A Case Study in Northern Bangladesh," Energies, MDPI, vol. 15(7), pages 1-17, March.
    4. Adams, Abdulai & Jumpah, Emmanuel Tetteh & Caesar, Livingstone Divine, 2021. "The nexuses between technology adoption and socioeconomic changes among farmers in Ghana," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Nasir Abbas Khan & Qijie Gao & Shoukat Ali & Babar Shahbaz & Palwasha Khan & Muhammad Abid, 2022. "Analyzing ICT-enabled agricultural advisory services in Pakistan: evidence from a marginalized region of Punjab province," Electronic Commerce Research, Springer, vol. 22(4), pages 1107-1129, December.
    6. Thedy Gerald Kimbi & Essegbemon Akpo & Eliud Kongola & Chris O. Ojiewo & Ronnie Vernooy & Geoffrey Muricho & Justin Ringo & Gerald Alex Lukurugu & Rajeev Varshney & Ramadjita Tabo, 2024. "A Probit Analysis of Determinants of Adoption of Improved Sorghum Technologies Among Farmers in Tanzania," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 13(1), pages 1-73, April.
    7. Muhammad Yaseen & Neha Thapa & Supawan Visetnoi & Shoukat Ali & Shahab E. Saqib, 2023. "Factors Determining the Farmers’ Decision for Adoption and Non-Adoption of Oil Palm Cultivation in Northeast Thailand," Sustainability, MDPI, vol. 15(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faruque As Sunny & Linlin Fu & Md Sadique Rahman & Zuhui Huang, 2022. "Determinants and Impact of Solar Irrigation Facility (SIF) Adoption: A Case Study in Northern Bangladesh," Energies, MDPI, vol. 15(7), pages 1-17, March.
    2. Adams, Abdulai & Jumpah, Emmanuel Tetteh & Caesar, Livingstone Divine, 2021. "The nexuses between technology adoption and socioeconomic changes among farmers in Ghana," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    3. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    4. Bortamuly, Alin Borah & Goswami, Kishor, 2015. "Determinants of the adoption of modern technology in the handloom industry in Assam," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 400-409.
    5. Margarita Genius & Christos Pantzios & Vangelis Tzouvelekas, 2003. "Information Acquisition and Adoption of Organic Farming Practices: Evidence from Farm Operations in Crete, Greece," Working Papers 0305, University of Crete, Department of Economics.
    6. Jean‐Paul Chavas & Céline Nauges, 2020. "Uncertainty, Learning, and Technology Adoption in Agriculture," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 42-53, March.
    7. Mansaray, B. & Jin, S. & Yuan, R. & Li, H., 2018. "Farmers Preferences for Attributes of Seed Rice in Sierra Leone: A Best-Worst Scaling Approach," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277552, International Association of Agricultural Economists.
    8. Jose Funes & Laixiang Sun & Fernando Sedano & Giovanni Baiocchi & Todd Benson, 2022. "Social interaction and geographic diffusion of iron‐biofortified beans in Rwanda," Agricultural Economics, International Association of Agricultural Economists, vol. 53(4), pages 503-528, July.
    9. Raju Ghimire & Wen-Chi Huang, 2015. "Household wealth and adoption of improved maize varieties in Nepal: a double-hurdle approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(6), pages 1321-1335, December.
    10. Dependra Bhatta & Krishna P. Paudel & Kai Liu, 2023. "Factors influencing water conservation practices adoptions by Nepali farmers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10879-10901, October.
    11. Garbero, A. & Marion, P., 2018. "IFAD RESEARCH SERIES 28 - Understanding the dynamics of adoption decisions and their poverty impacts: the case of improved maize seeds in Uganda," IFAD Research Series 280077, International Fund for Agricultural Development (IFAD).
    12. Kirui, Oliver & Mrzabaev, Alisher, 2015. "Costs of landj degradation in Eastern Africa," 2015 Conference, August 9-14, 2015, Milan, Italy 212007, International Association of Agricultural Economists.
    13. Nakano, Yuko & Tsusaka, Takuji W. & Aida, Takeshi & Pede, Valerien O., 2018. "Is farmer-to-farmer extension effective? The impact of training on technology adoption and rice farming productivity in Tanzania," World Development, Elsevier, vol. 105(C), pages 336-351.
    14. Mekonnen, Tigist, 2017. "Productivity and household welfare impact of technology adoption: Micro-level evidence from rural Ethiopia," MERIT Working Papers 2017-007, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Tiziana Pagnani & Elisabetta Gotor & Enoch Kikulwe & Francesco Caracciolo, 2021. "Livelihood assets’ influence on Ugandan farmers’ control practices for Banana Xanthomonas Wilt (BXW)," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-19, December.
    16. Kenneth, Akankwasa & Gerald, Ortmann & Edilegnaw, Wale & Wilberforce, Tushemereirwe, 2012. "Ex-Ante Adoption of New Cooking Banana (Matooke) Hybrids in Uganda Based on Farmers' Perceptions," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 123302, International Association of Agricultural Economists.
    17. Varshney, Deepak & Joshi, P. K. & Kumar, A. & Mishra, A. K. & Dubey, S. K., 2022. "Examining the transfer of knowledge and training to smallholders in India: direct and spillover effects of agricultural advisory services in an emerging economy," Papers published in Journals (Open Access), International Water Management Institute, pages 160:106067..
    18. Gregory Amacher & Jeffrey Alwang, 2004. "Productivity and Land Enhancing Technologies in Northern Ethiopia: Health, Public Investments, and Sequential Adoption," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 321-331.
    19. Mohamed Ghali & Maha Ben Jaballah & Nejla Ben Arfa & Annie Sigwalt, 2022. "Analysis of factors that influence adoption of agroecological practices in viticulture," Review of Agricultural, Food and Environmental Studies, Springer, vol. 103(3), pages 179-209, September.
    20. Marra, Michele & Pannell, David J. & Abadi Ghadim, Amir, 2003. "The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve?," Agricultural Systems, Elsevier, vol. 75(2-3), pages 215-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4331-:d:184565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.