IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v55y2018icp126-135.html
   My bibliography  Save this article

Perception and adoption of a new agricultural technology: Evidence from a developing country

Author

Listed:
  • Mottaleb, Khondoker A.

Abstract

Adoption of new agricultural technologies is always at the center of policy interest in developing countries. In reality, despite the visible benefits of many of the new agricultural technologies, including machinery and management practices, farmers either do not adopt them or it takes a long time to begin the adoption process and scaling up. To enhance the provision of irrigation using surface water and to enhance irrigation efficiency, Bangladesh has been trying to introduce the axial-flow-pump (AFP) appropriate for surface water irrigation, which can lift up to 55% more water, conditional on the water head, than a conventional centrifugal pump. Despite the visible benefits of the AFP, the uptake of the AFP for irrigation is low in the targeted zone of Bangladesh. The present study demonstrates that the new technology must be modified to adapt to local demand and specifications. Most importantly, the price of the new technology must be competitive with the prices of the existing available substitute technologies to ensure a rapid uptake and scaling up of this new agricultural technology.

Suggested Citation

  • Mottaleb, Khondoker A., 2018. "Perception and adoption of a new agricultural technology: Evidence from a developing country," Technology in Society, Elsevier, vol. 55(C), pages 126-135.
  • Handle: RePEc:eee:teinso:v:55:y:2018:i:c:p:126-135
    DOI: 10.1016/j.techsoc.2018.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X18300769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2018.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    2. Seckler, David & Amarasinghe, Upali A. & Molden, David J. & de Silva, Radhika & Barker, Randolph, 1998. "World water demand and supply, 1990 to 2025: scenarios and issues," IWMI Research Reports 61108, International Water Management Institute.
    3. Hossain, Mahabub, 2009. "The impact of shallow tubewells and boro rice on food security in Bangladesh:," IFPRI discussion papers 917, International Food Policy Research Institute (IFPRI).
    4. Ambast, S.K. & Tyagi, N.K. & Raul, S.K., 2006. "Management of declining groundwater in the Trans Indo-Gangetic Plain (India): Some options," Agricultural Water Management, Elsevier, vol. 82(3), pages 279-296, April.
    5. Dimara, Efthalia & Skuras, Dimitris, 2003. "Adoption of agricultural innovations as a two-stage partial observability process," Agricultural Economics, Blackwell, vol. 28(3), pages 187-196, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takashi Yamano & Maria Luz Malabayabas & Md. Ashraful Habib & Subrata Kumar Das, 2018. "Neighbors follow early adopters under stress: panel data analysis of submergence†tolerant rice in northern Bangladesh," Agricultural Economics, International Association of Agricultural Economists, vol. 49(3), pages 313-323, May.
    2. Mottaleb, Khondoker Abdul & Singh, Pawan Kumar & He, Xinyao & Hossain, Akbar & Kruseman, Gideon & Erenstein, Olaf, 2019. "Alternative use of wheat land to implement a potential wheat holiday as wheat blast control: In search of feasible crops in Bangladesh," Land Use Policy, Elsevier, vol. 82(C), pages 1-12.
    3. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    4. Wollni, Meike & Andersson, Camilla, 2014. "Spatial patterns of organic agriculture adoption: Evidence from Honduras," Ecological Economics, Elsevier, vol. 97(C), pages 120-128.
    5. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    6. Amarasinghe, Upali A., 2010. "Spatial variation of water supply and demand in Sri Lanka," IWMI Conference Proceedings 211310, International Water Management Institute.
    7. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    8. Aliou Diagne, 2012. "Adoption: a new Stata routine for estimating consistently population technological adoption parameters," SAN12 Stata Conference 17, Stata Users Group.
    9. Li, Bowei & Shen, Yueqin, 2021. "Effects of land transfer quality on the application of organic fertilizer by large-scale farmers in China," Land Use Policy, Elsevier, vol. 100(C).
    10. Mattoussi, Wided & Mattoussi, Foued & Larnaout, Afrah, 2023. "Optimal subsidization for the adoption of new irrigation technologies," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1126-1141.
    11. Aryal, Jeetendra Prakash & Rahut, Dil Bahadur & Thapa, Ganesh & Simtowe, Franklin, 2021. "Mechanisation of small-scale farms in South Asia: Empirical evidence derived from farm households survey," Technology in Society, Elsevier, vol. 65(C).
    12. Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
    13. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    14. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Olfa Gharsallah & Claudio Gandolfi & Arianna Facchi, 2021. "Methodologies for the Sustainability Assessment of Agricultural Production Systems, with a Focus on Rice: A Review," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    16. Shibia, Mumina Guyo, 2010. "Evaluation of Economic Losses in Rearing Replacement Heifers in Pastoral and Peri-Urban Camel Herds of Isiolo District, Kenya," Research Theses 134493, Collaborative Masters Program in Agricultural and Applied Economics.
    17. Berrittella, Maria & Rehdanz, Katrin & Roson, Roberto & Tol, Richard S.J., 2007. "The Economic Impact of Water Taxes: A Computable General Equilibrium Analysis with an International Data Set," Conference papers 331655, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Palanisami, Kuppannan, 2009. "Water markets as a demand management option: potentials, problems and prospects," Book Chapters,, International Water Management Institute.
    19. Benabderrazik, K. & Kopainsky, B. & Tazi, L. & Joerin, J. & Six, J., 2021. "Agricultural intensification can no longer ignore water conservation – A systemic modelling approach to the case of tomato producers in Morocco," Agricultural Water Management, Elsevier, vol. 256(C).
    20. Zomer, Robert J. & Bossio, Deborah A. & Trabucco, Antonio & Yuanjie, Li & Gupta, Diwan C. & Singh, Virendra P., 2007. "Trees and water: smallholder agroforestry on irrigated lands in Northern India," IWMI Research Reports 53067, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:55:y:2018:i:c:p:126-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.