IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v2y2019i1p5-69d200321.html
   My bibliography  Save this article

Tracking Poisson Parameter for Non-Stationary Discontinuous Time Series with Taylor’s Abnormal Fluctuation Scaling

Author

Listed:
  • Gen Sakoda

    (Department of Mathematical and Computing Sciences, School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
    These authors contributed equally to this work.)

  • Hideki Takayasu

    (Sony Computer Science Laboratories, 3-14-13 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-0022, Japan
    Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
    These authors contributed equally to this work.)

  • Misako Takayasu

    (Department of Mathematical and Computing Sciences, School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
    Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
    These authors contributed equally to this work.)

Abstract

We propose a parameter estimation method for non-stationary Poisson time series with the abnormal fluctuation scaling, known as Taylor’s law. By introducing the effect of Taylor’s fluctuation scaling into the State Space Model with the Particle Filter, the underlying Poisson parameter’s time evolution is estimated correctly from given non-stationary time series data with abnormally large fluctuations. We also developed a discontinuity detection method which enables tracking the Poisson parameter even for time series including sudden discontinuous jumps. As an example of application of this new general method, we analyzed Point-of-Sales data in convenience stores to estimate change of probability of purchase of commodities under fluctuating number of potential customers. The effectiveness of our method for Poisson time series with non-stationarity, large discontinuities and Taylor’s fluctuation scaling is verified by artificial and actual time series.

Suggested Citation

  • Gen Sakoda & Hideki Takayasu & Misako Takayasu, 2019. "Tracking Poisson Parameter for Non-Stationary Discontinuous Time Series with Taylor’s Abnormal Fluctuation Scaling," Stats, MDPI, vol. 2(1), pages 1-15, January.
  • Handle: RePEc:gam:jstats:v:2:y:2019:i:1:p:5-69:d:200321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/2/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/2/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaku Fukunaga & Hideki Takayasu & Misako Takayasu, 2016. "Property of Fluctuations of Sales Quantities by Product Category in Convenience Stores," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-19, June.
    2. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, June.
    3. Zoltan Eisler & Janos Kertesz, 2005. "Scaling theory of temporal correlations and size dependent fluctuations in the traded value of stocks," Papers physics/0510058, arXiv.org, revised May 2006.
    4. Cerqueti, Roy & Foschi, Rachele & Spizzichino, Fabio, 2009. "A spatial mixed Poisson framework for combination of excess-of-loss and proportional reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 59-64, August.
    5. Harvey, Andrew, 2006. "Forecasting with Unobserved Components Time Series Models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 7, pages 327-412, Elsevier.
    6. Cerqueti Roy & Ventura Marco, 2015. "Patent Valuation under Spatial Point Processes with Delayed and Decreasing Jump Intensity," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 15(2), pages 433-456, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gen Sakoda & Hideki Takayasu & Misako Takayasu, 2019. "Data Science Solutions for Retail Strategy to Reduce Waste Keeping High Profit," Sustainability, MDPI, vol. 11(13), pages 1-30, June.
    2. Bono, Pierre-Henri & David, Quentin & Desbordes, Rodolphe & Py, Loriane, 2022. "Metro infrastructure and metropolitan attractiveness," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    3. Kalle Hirvonen & John Hoddinott, 2017. "Agricultural production and children's diets: evidence from rural Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(4), pages 469-480, July.
    4. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    5. Noel Perceval Assogba & Daowei Zhang, 2020. "An Economic Analysis of Tropical Forest Resource Conservation in a Protected Area," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    6. Riccardo Crescenzi & Carlo Pietrobelli & Roberta Rabellotti, 2012. "Innovation Drivers, Value Chains and the Geography of Multinational Firms in European Regions," LEQS – LSE 'Europe in Question' Discussion Paper Series 53, European Institute, LSE.
    7. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    8. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    9. Carillo, Maria Rosaria & Papagni, Erasmo & Sapio, Alessandro, 2013. "Do collaborations enhance the high-quality output of scientific institutions? Evidence from the Italian Research Assessment Exercise," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 47(C), pages 25-36.
    10. Gamba, Simona & Magazzini, Laura & Pertile, Paolo, 2021. "R&D and market size: Who benefits from orphan drug legislation?," Journal of Health Economics, Elsevier, vol. 80(C).
    11. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    12. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
    13. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    14. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    15. Paul Kwame Nkegbe & Naasegnibe Kuunibe & Samuel Sekyi, 2017. "Poverty and malaria morbidity in the Jirapa District of Ghana: A count regression approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1293472-129, January.
    16. Kenneth W. Moffett & Laurie L. Rice & Ramana Madupalli, 2014. "Young Voters and War: The Iraq War as a Catalyst for Political Participation," Social Science Quarterly, Southwestern Social Science Association, vol. 95(5), pages 1419-1443, December.
    17. Erdogdu, Erkan, 2013. "A cross-country analysis of electricity market reforms: Potential contribution of New Institutional Economics," Energy Economics, Elsevier, vol. 39(C), pages 239-251.
    18. Santos Silva, J.M.C. & Tenreyro, Silvana, 2010. "On the existence of the maximum likelihood estimates in Poisson regression," Economics Letters, Elsevier, vol. 107(2), pages 310-312, May.
    19. Iván Darío Sánchez & Jorge Luis Juliao Rossi & Julio César Zuluaga Jiménez, 2013. "La relación entre las redes externas de trabajo y el desempeno innovador de las pymes colombianas: un análisis del rol moderador del ambiente industrial," Estudios Gerenciales, Universidad Icesi, September.
    20. Morescalchi, Andrea & Pammolli, Fabio & Penner, Orion & Petersen, Alexander M. & Riccaboni, Massimo, 2015. "The evolution of networks of innovators within and across borders: Evidence from patent data," Research Policy, Elsevier, vol. 44(3), pages 651-668.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:2:y:2019:i:1:p:5-69:d:200321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.