IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i3p46-d508517.html
   My bibliography  Save this article

Risk Assessment for Personalized Health Insurance Based on Real-World Data

Author

Listed:
  • Aristodemos Pnevmatikakis

    (Innovation Sprint Sprl, Clos Chapelle-aux-Champs 30, 1200 Brussels, Belgium)

  • Stathis Kanavos

    (Innovation Sprint Sprl, Clos Chapelle-aux-Champs 30, 1200 Brussels, Belgium)

  • George Matikas

    (Innovation Sprint Sprl, Clos Chapelle-aux-Champs 30, 1200 Brussels, Belgium)

  • Konstantina Kostopoulou

    (Innovation Sprint Sprl, Clos Chapelle-aux-Champs 30, 1200 Brussels, Belgium)

  • Alfredo Cesario

    (Innovation Sprint Sprl, Clos Chapelle-aux-Champs 30, 1200 Brussels, Belgium
    Scientific Directorate, Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy)

  • Sofoklis Kyriazakos

    (Innovation Sprint Sprl, Clos Chapelle-aux-Champs 30, 1200 Brussels, Belgium
    Business Development and Technology Department, School of Business and Social Sciences, Aarhus University, Birk Centerpark 15, 7400 Herning, Denmark)

Abstract

The way one leads their life is considered an important factor in health. In this paper we propose a system to provide risk assessment based on behavior for the health insurance sector. To do so we built a platform to collect real-world data that enumerate different aspects of behavior, and a simulator to augment actual data with synthetic. Using the data, we built classifiers to predict variations in important quantities for the lifestyle of a person. We offer a risk assessment service to the health insurance professionals by manipulating the classifier predictions in the long-term. We also address virtual coaching by using explainable Artificial Intelligence (AI) techniques on the classifier itself to gain insights on the advice to be offered to insurance customers.

Suggested Citation

  • Aristodemos Pnevmatikakis & Stathis Kanavos & George Matikas & Konstantina Kostopoulou & Alfredo Cesario & Sofoklis Kyriazakos, 2021. "Risk Assessment for Personalized Health Insurance Based on Real-World Data," Risks, MDPI, vol. 9(3), pages 1-15, March.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:3:p:46-:d:508517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/3/46/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/3/46/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weidner, Wiltrud & Transchel, Fabian W.G. & Weidner, Robert, 2017. "Telematic driving profile classification in car insurance pricing," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 213-236, September.
    2. Elizabeth M. Joseph-Shehu & Busisiwe P. Ncama & Omolola O. Irinoye, 2019. "Health-Promoting Lifestyle Behaviour: A Determinant for Noncommunicable Diseases Risk Factors Among Employees in a Nigerian University," Global Journal of Health Science, Canadian Center of Science and Education, vol. 11(12), pages 1-15, November.
    3. Marjan Qazvini, 2019. "On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study," Risks, MDPI, vol. 7(3), pages 1-17, June.
    4. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ritu Srivastava & Anupama Prashar & S.Veena Iyer & Piyush Gotise, 2024. "Insurance in the Industry 4.0 environment: A literature review, synthesis, and research agenda," Australian Journal of Management, Australian School of Business, vol. 49(2), pages 290-312, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vali Asimit & Ioannis Kyriakou & Jens Perch Nielsen, 2020. "Special Issue “Machine Learning in Insurance”," Risks, MDPI, vol. 8(2), pages 1-2, May.
    2. Christopher Grumiau & Mina Mostoufi & Solon Pavlioglou & Tim Verdonck, 2020. "Address Identification Using Telematics: An Algorithm to Identify Dwell Locations," Risks, MDPI, vol. 8(3), pages 1-12, September.
    3. Etye Steinberg, 2022. "Run for Your Life: The Ethics of Behavioral Tracking in Insurance," Journal of Business Ethics, Springer, vol. 179(3), pages 665-682, September.
    4. Thomas Poufinas & Periklis Gogas & Theophilos Papadimitriou & Emmanouil Zaganidis, 2023. "Machine Learning in Forecasting Motor Insurance Claims," Risks, MDPI, vol. 11(9), pages 1-19, September.
    5. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2018. "Multivariate credibility modeling for usage-based motor insurance pricing with behavioral data," LIDAM Discussion Papers ISBA 2018032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    7. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    8. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    9. Darren Shannon & Tim Jannusch & Florian David‐Spickermann & Martin Mullins & Martin Cunneen & Finbarr Murphy, 2021. "Connected and autonomous vehicle injury loss events: Potential risk and actuarial considerations for primary insurers," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(1), pages 5-35, March.
    10. Meng, Shengwang & Gao, Yaqian & Huang, Yifan, 2022. "Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 115-127.
    11. Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
    12. Angela Zeier Röschmann & Matthias Erny & Joël Wagner, 2022. "On the (future) role of on-demand insurance: market landscape, business model and customer perception," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(3), pages 603-642, July.
    13. Guangyuan Gao & Mario V. Wüthrich, 2019. "Convolutional Neural Network Classification of Telematics Car Driving Data," Risks, MDPI, vol. 7(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:3:p:46-:d:508517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.