IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i6p115-d572157.html
   My bibliography  Save this article

A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures

Author

Listed:
  • Despoina Makariou

    (Department of Statistics, London School of Economics and Political Science, London WC2A 2AE, UK)

  • Pauline Barrieu

    (Department of Statistics, London School of Economics and Political Science, London WC2A 2AE, UK)

  • George Tzougas

    (Department of Statistics, London School of Economics and Political Science, London WC2A 2AE, UK)

Abstract

The key purpose of this paper is to present an alternative viewpoint for combining expert opinions based on finite mixture models. Moreover, we consider that the components of the mixture are not necessarily assumed to be from the same parametric family. This approach can enable the agent to make informed decisions about the uncertain quantity of interest in a flexible manner that accounts for multiple sources of heterogeneity involved in the opinions expressed by the experts in terms of the parametric family, the parameters of each component density, and also the mixing weights. Finally, the proposed models are employed for numerically computing quantile-based risk measures in a collective decision-making context.

Suggested Citation

  • Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:6:p:115-:d:572157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/6/115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/6/115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen C. Hora & Benjamin R. Fransen & Natasha Hawkins & Irving Susel, 2013. "Median Aggregation of Distribution Functions," Decision Analysis, INFORMS, vol. 10(4), pages 279-291, December.
    2. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems Using Finite Mixture Models," ASTIN Bulletin, Cambridge University Press, vol. 44(2), pages 417-444, May.
    3. Allison, David B. & Gadbury, Gary L. & Heo, Moonseong & Fernandez, Jose R. & Lee, Cheol-Koo & Prolla, Tomas A. & Weindruch, Richard, 2002. "A mixture model approach for the analysis of microarray gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 1-20, March.
    4. Dominik D. Lambrigger & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "The Quantification of Operational Risk using Internal Data, Relevant External Data and Expert Opinions," Papers 0904.1361, arXiv.org.
    5. JL Bamber & WP Aspinall & RM Cooke, 2016. "A commentary on “how to interpret expert judgment assessments of twenty-first century sea-level rise” by Hylke de Vries and Roderik SW van de Wal," Climatic Change, Springer, vol. 137(3), pages 321-328, August.
    6. Flandoli, F. & Giorgi, E. & Aspinall, W.P. & Neri, A., 2011. "Comparison of a new expert elicitation model with the Classical Model, equal weights and single experts, using a cross-validation technique," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1292-1310.
    7. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    8. Colson, Abigail R. & Cooke, Roger M., 2017. "Cross validation for the classical model of structured expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 109-120.
    9. Antonio Punzo & Angelo Mazza & Antonello Maruotti, 2018. "Fitting insurance and economic data with outliers: a flexible approach based on finite mixtures of contaminated gamma distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(14), pages 2563-2584, October.
    10. Yiu-Fai Yung, 1997. "Finite mixtures in confirmatory factor-analysis models," Psychometrika, Springer;The Psychometric Society, vol. 62(3), pages 297-330, September.
    11. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    12. Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.
    13. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    14. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    15. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    16. Marc Henry & Yuichi Kitamura & Bernard Salanié, 2014. "Partial identification of finite mixtures in econometric models," Quantitative Economics, Econometric Society, vol. 5, pages 123-144, March.
    17. Peiro, Amado, 1999. "Skewness in financial returns," Journal of Banking & Finance, Elsevier, vol. 23(6), pages 847-862, June.
    18. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    19. Gambacciani, Marco & Paolella, Marc S., 2017. "Robust normal mixtures for financial portfolio allocation," Econometrics and Statistics, Elsevier, vol. 3(C), pages 91-111.
    20. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
    21. Cooke, Roger M. & Goossens, Louis L.H.J., 2008. "TU Delft expert judgment data base," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 657-674.
    22. Kenneth C. Lichtendahl & Yael Grushka-Cockayne & Robert L. Winkler, 2013. "Is It Better to Average Probabilities or Quantiles?," Management Science, INFORMS, vol. 59(7), pages 1594-1611, July.
    23. George Tzougas & Spyridon Vrontos & Nicholas Frangos, 2018. "Bonus-Malus Systems with Two-Component Mixture Models Arising from Different Parametric Families," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 55-91, January.
    24. Rufo, M.J. & Pérez, C.J. & Martín, J., 2010. "Merging experts' opinions: A Bayesian hierarchical model with mixture of prior distributions," European Journal of Operational Research, Elsevier, vol. 207(1), pages 284-289, November.
    25. Tsz Chai Fung & George Tzougas & Mario Wuthrich, 2021. "Mixture composite regression models with multi-type feature selection," Papers 2103.07200, arXiv.org, revised Jul 2021.
    26. Barrieu, Pauline & Scandolo, Giacomo, 2015. "Assessing financial model risk," European Journal of Operational Research, Elsevier, vol. 242(2), pages 546-556.
    27. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems using finite mixture models," LSE Research Online Documents on Economics 70919, London School of Economics and Political Science, LSE Library.
    28. Pauline Barrieu & Claudia Ravanelli, 2015. "Robust Capital Requirements with Model Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 44(1), pages 1-28, February.
    29. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2018. "Bonus-Malus systems with two component mixture models arising from different parametric families," LSE Research Online Documents on Economics 84301, London School of Economics and Political Science, LSE Library.
    30. Fung, Tsz Chai & Badescu, Andrei L. & Lin, X. Sheldon, 2019. "A class of mixture of experts models for general insurance: Theoretical developments," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 111-127.
    31. Chai Fung, Tsz & Badescu, Andrei L. & Sheldon Lin, X., 2019. "A Class Of Mixture Of Experts Models For General Insurance: Application To Correlated Claim Frequencies," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 647-688, September.
    32. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    33. Robert L. Winkler, 1968. "The Consensus of Subjective Probability Distributions," Management Science, INFORMS, vol. 15(2), pages 61-75, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mogens Steffensen, 2022. "Special Issue “Risks: Feature Papers 2021”," Risks, MDPI, vol. 10(3), pages 1-2, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makariou, Despoina & Barrieu, Pauline & Tzougas, George, 2021. "A finite mixture modelling perspective for combining experts’ opinions with an application to quantile-based risk measures," LSE Research Online Documents on Economics 110763, London School of Economics and Political Science, LSE Library.
    2. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    3. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    4. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    5. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    6. Colson, Abigail R. & Cooke, Roger M., 2017. "Cross validation for the classical model of structured expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 109-120.
    7. Anil Gaba & Ilia Tsetlin & Robert L. Winkler, 2017. "Combining Interval Forecasts," Decision Analysis, INFORMS, vol. 14(1), pages 1-20, March.
    8. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    9. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    10. David V. Budescu & Eva Chen, 2015. "Identifying Expertise to Extract the Wisdom of Crowds," Management Science, INFORMS, vol. 61(2), pages 267-280, February.
    11. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    12. Tzougas, George & Karlis, Dimitris, 2020. "An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion," LSE Research Online Documents on Economics 104027, London School of Economics and Political Science, LSE Library.
    13. Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
    14. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    15. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    16. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    17. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    18. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    19. Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018. "Future Prospects for Energy Technologies: Insights from Expert Elicitations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.
    20. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017. "Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:6:p:115-:d:572157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.