IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v42y2008i2p727-735.html
   My bibliography  Save this article

Credibility premiums for the zero-inflated Poisson model and new hunger for bonus interpretation

Author

Listed:
  • Boucher, Jean-Philippe
  • Denuit, Michel

Abstract

The purpose of this paper is to explore and compare the credibility premiums in generalized zero-inflated count models for panel data. Predictive premiums based on quadratic loss and exponential loss are derived. It is shown that the credibility premiums of the zero-inflated model allow for more flexibility in the prediction. Indeed, the future premiums not only depend on the number of past claims, but also on the number of insured periods with at least one claim. The model also offers another way of analysing the hunger for bonus phenomenon. The accident distribution is obtained from the zero-inflated distribution used to model the claims distribution, which can in turn be used to evaluate the impact of various credibility premiums on the reported accident distribution. This way of analysing the claims data gives another point of view on the research conducted on the development of statistical models for predicting accidents. A numerical illustration supports this discussion.

Suggested Citation

  • Boucher, Jean-Philippe & Denuit, Michel, 2008. "Credibility premiums for the zero-inflated Poisson model and new hunger for bonus interpretation," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 727-735, April.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:2:p:727-735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00088-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Virginia Young, 1998. "Credibility Using a Loss Function from Spline Theory," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 101-111.
    2. Young, Virginia R., 1996. "Credibility and Persistency," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 53-69, May.
    3. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    4. Lemaire, Jean, 1977. "La Soif du Bonus," ASTIN Bulletin, Cambridge University Press, vol. 9(1-2), pages 181-190, January.
    5. Morillo, Isabel & Bermudez, Lluis, 2003. "Bonus-malus system using an exponential loss function with an Inverse Gaussian distribution," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 49-57, August.
    6. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    7. Boucher, Jean-Philippe & Denuit, Michel, 2006. "Fixed versus Random Effects in Poisson Regression Models for Claim Counts: A Case Study with Motor Insurance," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 285-301, May.
    8. Virginia Young & F. De Vylder, 2000. "Credibility in Favor of Unlucky Insureds," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 107-113.
    9. Yip, Karen C.H. & Yau, Kelvin K.W., 2005. "On modeling claim frequency data in general insurance with extra zeros," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 153-163, April.
    10. Walhin, Jean François & Paris, José, 2000. "The True Claim Amount and Frequency Distributions within a Bonus-Malus System," ASTIN Bulletin, Cambridge University Press, vol. 30(2), pages 391-403, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihaela DAVID, 2014. "Modeling The Frequency Of Claims In Auto Insurance With Application To A French Case," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 69-85, June.
    2. Miguel Santolino & Jean-Philippe Boucher, 2009. "Modelling the disability severity score in motor insurance claims: an application to the Spanish case," IREA Working Papers 200902, University of Barcelona, Research Institute of Applied Economics, revised Jan 2009.
    3. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    4. Bermúdez, Lluís & Karlis, Dimitris, 2011. "Bayesian multivariate Poisson models for insurance ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 226-236, March.
    5. Minwoo Kim & Himchan Jeong & Dipak Dey, 2022. "Approximation of Zero-Inflated Poisson Credibility Premium via Variational Bayes Approach," Risks, MDPI, vol. 10(3), pages 1-11, March.
    6. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    7. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    8. Bermúdez i Morata, Lluís, 2009. "A priori ratemaking using bivariate Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 135-141, February.
    9. Payandeh Najafabadi, Amir T. & Hatami, Hamid & Omidi Najafabadi, Maryam, 2012. "A maximum-entropy approach to the linear credibility formula," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 216-221.
    10. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    11. Lee, Woojoo & Kim, Jeonghwan & Ahn, Jae Youn, 2020. "The Poisson random effect model for experience ratemaking: Limitations and alternative solutions," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 26-36.
    12. Lluis Bermúdez i Morata, 2008. "A priori ratemaking using bivariate poisson regression models," Working Papers XREAP2008-09, Xarxa de Referència en Economia Aplicada (XREAP), revised Jul 2008.
    13. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    14. Zhao, Xiaobing & Zhou, Xian, 2012. "Modeling gap times between recurrent events by marginal rate function," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 370-383.
    15. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    16. Payandeh Najafabadi, Amir T., 2010. "A new approach to the credibility formula," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 334-338, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    2. Park, Sojung C. & Kim, Joseph H.T. & Ahn, Jae Youn, 2018. "Does hunger for bonuses drive the dependence between claim frequency and severity?," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 32-46.
    3. Lee, Woojoo & Kim, Jeonghwan & Ahn, Jae Youn, 2020. "The Poisson random effect model for experience ratemaking: Limitations and alternative solutions," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 26-36.
    4. Arthur Charpentier & Arthur David & Romuald Elie, 2017. "Optimal Claiming Strategies in Bonus Malus Systems and Implied Markov Chains," Risks, MDPI, vol. 5(4), pages 1-17, November.
    5. David Mihaela & Jemna Dănuţ-Vasile, 2015. "Modeling the Frequency of Auto Insurance Claims by Means of Poisson and Negative Binomial Models," Scientific Annals of Economics and Business, Sciendo, vol. 62(2), pages 151-168, July.
    6. Katrien Antonio & Emiliano Valdez, 2012. "Statistical concepts of a priori and a posteriori risk classification in insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 187-224, June.
    7. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    8. Mihaela Covrig & Iulian Mircea & Gheorghita Zbaganu & Alexandru Coser & Alexandru Tindeche, 2015. "Using R In Generalized Linear Models," Romanian Statistical Review, Romanian Statistical Review, vol. 63(3), pages 33-45, September.
    9. Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.
    10. Jean Pinquet, 2012. "Experience rating in non-life insurance," Working Papers hal-00677100, HAL.
    11. Marjan Qazvini, 2019. "On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study," Risks, MDPI, vol. 7(3), pages 1-17, June.
    12. Helai Huang & Hong Chin, 2010. "Modeling road traffic crashes with zero-inflation and site-specific random effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 445-462, August.
    13. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    14. Zhao, Xiaobing & Zhou, Xian, 2012. "Modeling gap times between recurrent events by marginal rate function," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 370-383.
    15. Mihaela DAVID, 2014. "Modeling The Frequency Of Claims In Auto Insurance With Application To A French Case," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 69-85, June.
    16. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    17. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    18. Tan, Chong It, 2016. "Varying transition rules in bonus–malus systems: From rules specification to determination of optimal relativities," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 134-140.
    19. Mihaela COVRIG & Dumitru BADEA, 2017. "Some Generalized Linear Models for the Estimation of the Mean Frequency of Claims in Motor Insurance," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 91-107.
    20. Denise Desjardins & Georges Dionne & Yang Lu, 2023. "Hierarchical random‐effects model for the insurance pricing of vehicles belonging to a fleet," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 242-259, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:2:p:727-735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.