IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i2p62-d151752.html
   My bibliography  Save this article

A Least-Squares Monte Carlo Framework in Proxy Modeling of Life Insurance Companies

Author

Listed:
  • Anne-Sophie Krah

    (Department of Mathematics, TU Kaiserslautern, Erwin Schrödinger Strasse, Geb. 48, 67653 Kaiserslautern, Germany)

  • Zoran Nikolić

    (Mathematical Institute, University Cologne, Weyertal 86-90, 50931 Cologne, Germany)

  • Ralf Korn

    (Department of Mathematics, TU Kaiserslautern, Erwin Schrödinger Strasse, Geb. 48, 67653 Kaiserslautern, Germany
    Department Financial Mathematics, Fraunhofer ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany)

Abstract

The Solvency II directive asks insurance companies to derive their solvency capital requirement from the full loss distribution over the coming year. While this is in general computationally infeasible in the life insurance business, an application of the Least-Squares Monte Carlo (LSMC) method offers a possibility to overcome this computational challenge. We outline in detail the challenges a life insurer faces, the theoretical basis of the LSMC method and the necessary steps on the way to a reliable proxy modeling in the life insurance business. Further, we illustrate the advantages of the LSMC approach via presenting (slightly disguised) real-world applications.

Suggested Citation

  • Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2018. "A Least-Squares Monte Carlo Framework in Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 6(2), pages 1-26, June.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:2:p:62-:d:151752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/2/62/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/2/62/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Carriere, Jacques F., 1996. "Valuation of the early-exercise price for options using simulations and nonparametric regression," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 19-30, December.
    3. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "Efficient Valuation of SCR via a Neural Network Approach," Papers 1610.01946, arXiv.org.
    4. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Kiermayer & Christian Wei{ss}, 2019. "Grouping of Contracts in Insurance using Neural Networks," Papers 1912.09964, arXiv.org.
    2. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
    3. Massimo Costabile & Fabio Viviano, 2020. "Testing the Least-Squares Monte Carlo Method for the Evaluation of Capital Requirements in Life Insurance," Risks, MDPI, vol. 8(2), pages 1-13, May.
    4. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    5. Aurélien Alfonsi & Bernard Lapeyre & Jérôme Lelong, 2023. "How Many Inner Simulations to Compute Conditional Expectations with Least-square Monte Carlo?," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-25, September.
    6. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
    7. Weiß Christian & Nikolić Zoran, 2019. "An aspect of optimal regression design for LSMC," Monte Carlo Methods and Applications, De Gruyter, vol. 25(4), pages 283-290, December.
    8. Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2020. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 8(1), pages 1-79, February.
    9. Schmidt, Jan-Philipp (Ed.), 2020. "Künstliche Intelligenz im Risikomanagement: Proceedings zum 15. FaRis & DAV Symposium am 6. Dezember 2019," Forschung am ivwKöln 6/2020, Technische Hochschule Köln – University of Applied Sciences, Institute for Insurance Studies.
    10. Aur'elien Alfonsi & Bernard Lapeyre & J'er^ome Lelong, 2022. "How many inner simulations to compute conditional expectations with least-square Monte Carlo?," Papers 2209.04153, arXiv.org, revised May 2023.
    11. Claus Baumgart & Johannes Krebs & Robert Lempertseder & Oliver Pfaffel, 2019. "Quantifying Life Insurance Risk using Least-Squares Monte Carlo," Papers 1910.03951, arXiv.org.
    12. Aurélien Alfonsi & Bernard Lapeyre & Jérôme Lelong, 2023. "How many inner simulations to compute conditional expectations with least-square Monte Carlo?," Post-Print hal-03770051, HAL.
    13. Lu Xiong & Jiyao Luo & Hanna Vise & Madison White, 2023. "Distributed Least-Squares Monte Carlo for American Option Pricing," Risks, MDPI, vol. 11(8), pages 1-16, August.
    14. Massimo Costabile & Fabio Viviano, 2021. "Modeling the Future Value Distribution of a Life Insurance Portfolio," Risks, MDPI, vol. 9(10), pages 1-17, October.
    15. Jo~ao F. Doriguello & Alessandro Luongo & Jinge Bao & Patrick Rebentrost & Miklos Santha, 2021. "Quantum algorithm for stochastic optimal stopping problems with applications in finance," Papers 2111.15332, arXiv.org, revised Jul 2023.
    16. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
    17. Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2020. "Least-Squares Monte Carlo for Proxy Modeling in Life Insurance: Neural Networks," Risks, MDPI, vol. 8(4), pages 1-21, November.
    18. Anne-Sophie Krah & Zoran Nikoli'c & Ralf Korn, 2019. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Papers 1909.02182, arXiv.org.
    19. Aurélien Alfonsi & Bernard Lapeyre & Jérôme Lelong, 2022. "How many inner simulations to compute conditional expectations with least-square Monte Carlo?," Working Papers hal-03770051, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    2. repec:hum:wpaper:sfb649dp2006-051 is not listed on IDEAS
    3. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    4. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    5. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2018. "Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization," Papers 1803.11467, arXiv.org, revised Sep 2018.
    6. Gilles Pag`es & Benedikt Wilbertz, 2011. "GPGPUs in computational finance: Massive parallel computing for American style options," Papers 1101.3228, arXiv.org.
    7. Nicholas Davey & Nicolas Langrené & Wen Chen & Jonathan R. Rhodes & Simon Dunstall & Saman Halgamuge, 2023. "Designing higher value roads to preserve species at risk by optimally controlling traffic flow," Annals of Operations Research, Springer, vol. 320(2), pages 663-693, January.
    8. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    9. Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
    10. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    11. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    12. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
    13. A. -S. Chen & P. -F. Shen, 2003. "Computational complexity analysis of least-squares Monte Carlo (LSM) for pricing US derivatives," Applied Economics Letters, Taylor & Francis Journals, vol. 10(4), pages 223-229.
    14. Damiano Brigo & Qing Liu & Andrea Pallavicini & David Sloth, 2014. "Nonlinear Valuation under Collateral, Credit Risk and Funding Costs: A Numerical Case Study Extending Black-Scholes," Papers 1404.7314, arXiv.org.
    15. Louis Bhim & Reiichiro Kawai, 2018. "Smooth Upper Bounds For The Price Function Of American Style Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-38, February.
    16. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    17. Valeriy Ryabchenko & Sergey Sarykalin & Stan Uryasev, 2004. "Pricing European Options by Numerical Replication: Quadratic Programming with Constraints," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 301-333, September.
    18. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    19. S'ergio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys de Souza, 2017. "Discrete-type approximations for non-Markovian optimal stopping problems: Part II," Papers 1707.05250, arXiv.org, revised Dec 2019.
    20. Jérôme Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Working Papers hal-01983115, HAL.
    21. Ludkovski, Michael & Young, Virginia R., 2008. "Indifference pricing of pure endowments and life annuities under stochastic hazard and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 14-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:2:p:62-:d:151752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.