Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
- Frédéric Abergel & Grégoire Loeper, 2013. "Pricing and hedging contingent claims with liquidity costs and market impact," Working Papers hal-00802402, HAL.
- Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005.
"A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability,"
The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
- Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan Storud, 2004. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," NBER Working Papers 10934, National Bureau of Economic Research, Inc.
- Aïd, René & Campi, Luciano & Langrené, Nicolas & Pham, Huyên, 2014. "A probabilistic numerical method for optimal multiple switching problems in high dimension," LSE Research Online Documents on Economics 63011, London School of Economics and Political Science, LSE Library.
- Carriere, Jacques F., 1996. "Valuation of the early-exercise price for options using simulations and nonparametric regression," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 19-30, December.
- Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
- Viktor Winschel & Markus Kr‰tzig, 2010.
"Solving, Estimating, and Selecting Nonlinear Dynamic Models Without the Curse of Dimensionality,"
Econometrica, Econometric Society, vol. 78(2), pages 803-821, March.
- Winschel, Viktor & Krätzig, Markus, 2008. "Solving, estimating and selecting nonlinear dynamic models without the curse of dimensionality," SFB 649 Discussion Papers 2008-018, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- René Aïd & Luciano Campi & Nicolas Langrené & Huyên Pham, 2014. "A probabilistic numerical method for optimal multiple switching problems in high dimension," Post-Print hal-02294328, HAL.
- Krueger, Dirk & Kubler, Felix, 2004. "Computing equilibrium in OLG models with stochastic production," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1411-1436, April.
- Fei Cong & Cornelis W. Oosterlee, 2017. "Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 433-458, March.
- Ralph S. J. Koijen & Theo E. Nijman & Bas J. M. Werker, 2010. "When Can Life Cycle Investors Benefit from Time-Varying Bond Risk Premia?," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 741-780, February.
- repec:dau:papers:123456789/4273 is not listed on IDEAS
- Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014.
"Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain,"
Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
- Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Rafael Valero, 2013. "Smolyak Method for Solving Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain," NBER Working Papers 19326, National Bureau of Economic Research, Inc.
- Kenneth Judd & Lilia Maliar & Rafael Valero & Serguei Maliar, 2013. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Working Papers. Serie AD 2013-06, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Rafael Valero, 2013. "Smolyak Method for Solving Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain," BYU Macroeconomics and Computational Laboratory Working Paper Series 2013-02, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
- Jules Binsbergen & Michael Brandt, 2007. "Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 355-367, May.
- Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
- Carlo Acerbi & Giacomo Scandolo, 2008. "Liquidity risk theory and coherent measures of risk," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 681-692.
- Bart Diris & Franz Palm & Peter Schotman, 2015. "Long-Term Strategic Asset Allocation: An Out-of-Sample Evaluation," Management Science, INFORMS, vol. 61(9), pages 2185-2202, September.
- repec:dau:papers:123456789/12195 is not listed on IDEAS
- Ralph S. J. Koijen & Juan Carlos Rodríguez & Alessandro Sbuelz, 2009. "Momentum and Mean Reversion in Strategic Asset Allocation," Management Science, INFORMS, vol. 55(7), pages 1199-1213, July.
- Yu Tian & Ron Rood & Cornelis W. Oosterlee, 2013. "Efficient portfolio valuation incorporating liquidity risk," Quantitative Finance, Taylor & Francis Journals, vol. 13(10), pages 1575-1586, October.
- Viktor Winschel, 2005. "Solving, Estimating and Selecting Nonlinear Dynamic Economic Models without the Curse of Dimensionality," GE, Growth, Math methods 0507014, University Library of Munich, Germany.
- Esteban Moro & Javier Vicente & Luis G. Moyano & Austin Gerig & J. Doyne Farmer & Gabriella Vaglica & Fabrizio Lillo & Rosario N. Mantegna, 2009. "Market impact and trading profile of large trading orders in stock markets," Papers 0908.0202, arXiv.org.
- Jain, Shashi & Oosterlee, Cornelis W., 2015. "The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 412-431.
- Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
- Lorenzo Garlappi & Georgios Skoulakis, 2010. "Solving Consumption and Portfolio Choice Problems: The State Variable Decomposition Method," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3346-3400.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
- Rongju Zhang & Nicolas Langrené & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2019. "Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method," Post-Print hal-02909342, HAL.
- Yichen Zhu & Marcos Escobar-Anel & Matt Davison, 2023. "A Polynomial-Affine Approximation for Dynamic Portfolio Choice," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1177-1213, October.
- Björn Bick & Holger Kraft & Claus Munk, 2013. "Solving Constrained Consumption-Investment Problems by Simulation of Artificial Market Strategies," Management Science, INFORMS, vol. 59(2), pages 485-503, June.
- Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
- Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
- Mark Broadie & Weiwei Shen, 2017. "Numerical solutions to dynamic portfolio problems with upper bounds," Computational Management Science, Springer, vol. 14(2), pages 215-227, April.
- Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
- Yichen Zhu & Marcos Escobar-Anel, 2021. "A Neural Network Monte Carlo Approximation for Expected Utility Theory," JRFM, MDPI, vol. 14(7), pages 1-18, July.
- Fei Cong & Cornelis W. Oosterlee, 2017. "Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 433-458, March.
- Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
- Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020.
"Expected utility and catastrophic risk in a stochastic economy–climate model,"
Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
- Ikefuji, M. & Laeven, R.J.A. & Magnus, J.R. & Muris, C.H.M., 2010. "Expected Utility and Catastrophic Risk in a Stochastic Economy-Climate Model," Other publications TiSEM 52cbee73-e1dc-4ed3-8ec9-6, Tilburg University, School of Economics and Management.
- Ikefuji, M. & Laeven, R.J.A. & Magnus, J.R. & Muris, C.H.M., 2010. "Expected Utility and Catastrophic Risk in a Stochastic Economy-Climate Model," Discussion Paper 2010-122, Tilburg University, Center for Economic Research.
- Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
- Christian Bender & Nikolaus Schweizer, 2019. "`Regression Anytime' with Brute-Force SVD Truncation," Papers 1908.08264, arXiv.org, revised Oct 2020.
- Ruimeng Hu, 2019. "Deep Learning for Ranking Response Surfaces with Applications to Optimal Stopping Problems," Papers 1901.03478, arXiv.org, revised Mar 2020.
- Aleksandar Arandjelovi'c & Pavel V. Shevchenko & Tomoko Matsui & Daisuke Murakami & Tor A. Myrvoll, 2024. "Solving stochastic climate-economy models: A deep least-squares Monte Carlo approach," Papers 2408.09642, arXiv.org.
- Chen, D.H.J. & Beetsma, R.M.W.J. & van Wijnbergen, S.J.G., 2020.
"Unhedgeable inflation risk within pension schemes,"
Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 7-24.
- Beetsma, Roel & Chen, Damiaan & van Wijnbergen, Sweder, 2019. "Unhedgeable Inflation Risk within Pension Schemes," CEPR Discussion Papers 13742, C.E.P.R. Discussion Papers.
- Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2017. "Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method," Papers 1704.00416, arXiv.org, revised Jun 2019.
- Farina Weiss, 2021. "A numerical approach to solve consumption-portfolio problems with predictability in income, stock prices, and house prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 33-81, February.
- Ivan Guo & Nicolas Langrené & Gregoire Loeper & Wei Ning, 2020. "Robust utility maximization under model uncertainty via a penalization approach," Working Papers hal-02910261, HAL.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2018-04-23 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.11467. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.