IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i1p16-d318508.html
   My bibliography  Save this article

Assessing Asset-Liability Risk with Neural Networks

Author

Listed:
  • Patrick Cheridito

    (RiskLab, ETH Zurich, 8092 Zurich, Switzerland)

  • John Ery

    (RiskLab, ETH Zurich, 8092 Zurich, Switzerland)

  • Mario V. Wüthrich

    (RiskLab, ETH Zurich, 8092 Zurich, Switzerland)

Abstract

We introduce a neural network approach for assessing the risk of a portfolio of assets and liabilities over a given time period. This requires a conditional valuation of the portfolio given the state of the world at a later time, a problem that is particularly challenging if the portfolio contains structured products or complex insurance contracts which do not admit closed form valuation formulas. We illustrate the method on different examples from banking and insurance. We focus on value-at-risk and expected shortfall, but the approach also works for other risk measures.

Suggested Citation

  • Patrick Cheridito & John Ery & Mario V. Wüthrich, 2020. "Assessing Asset-Liability Risk with Neural Networks," Risks, MDPI, vol. 8(1), pages 1-17, February.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:16-:d:318508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/1/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/1/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carriere, Jacques F., 1996. "Valuation of the early-exercise price for options using simulations and nonparametric regression," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 19-30, December.
    2. Jun Pan & Darrell Duffie, 2001. "Analytical value-at-risk with jumps and credit risk," Finance and Stochastics, Springer, vol. 5(2), pages 155-180.
    3. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    4. Mathieu Cambou & Damir Filipović, 2018. "Replicating portfolio approach to capital calculation," Finance and Stochastics, Springer, vol. 22(1), pages 181-203, January.
    5. Jan Natolski & Ralf Werner, 2017. "Mathematical Analysis of Replication by Cash Flow Matching," Risks, MDPI, vol. 5(1), pages 1-15, February.
    6. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    8. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    9. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    10. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    11. Bauer, Daniel & Reuss, Andreas & Singer, Daniela, 2012. "On the Calculation of the Solvency Capital Requirement Based on Nested Simulations," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 453-499, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calypso Herrera & Florian Krach & Josef Teichmann, 2020. "Neural Jump Ordinary Differential Equations: Consistent Continuous-Time Prediction and Filtering," Papers 2006.04727, arXiv.org, revised Apr 2021.
    2. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
    4. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
    5. E. Lorenzo & G. Piscopo & M. Sibillo, 2024. "Addressing the economic and demographic complexity via a neural network approach: risk measures for reverse mortgages," Computational Management Science, Springer, vol. 21(1), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Cheridito & John Ery & Mario V. Wuthrich, 2021. "Assessing asset-liability risk with neural networks," Papers 2105.12432, arXiv.org.
    2. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
    3. L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
    4. Kun Zhang & Ben Mingbin Feng & Guangwu Liu & Shiyu Wang, 2022. "Sample Recycling for Nested Simulation with Application in Portfolio Risk Measurement," Papers 2203.15929, arXiv.org.
    5. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    6. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    7. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    8. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    9. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
    10. Cornelis S. L. de Graaf & Drona Kandhai & Christoph Reisinger, 2016. "Efficient exposure computation by risk factor decomposition," Papers 1608.01197, arXiv.org, revised Feb 2018.
    11. Junyao Chen & Tony Sit & Hoi Ying Wong, 2019. "Simulation-based Value-at-Risk for Nonlinear Portfolios," Papers 1904.09088, arXiv.org.
    12. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
    13. Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.
    14. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    15. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    16. Lotfi Boudabsa & Damir Filipović, 2022. "Machine learning with kernels for portfolio valuation and risk management," Finance and Stochastics, Springer, vol. 26(2), pages 131-172, April.
    17. Ankirchner, Stefan & Schneider, Judith C. & Schweizer, Nikolaus, 2014. "Cross-hedging minimum return guarantees: Basis and liquidity risks," Journal of Economic Dynamics and Control, Elsevier, vol. 41(C), pages 93-109.
    18. Lucio Fernandez‐Arjona & Damir Filipović, 2022. "A machine learning approach to portfolio pricing and risk management for high‐dimensional problems," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 982-1019, October.
    19. Fort Gersende & Gobet Emmanuel & Moulines Eric, 2017. "MCMC design-based non-parametric regression for rare event. Application to nested risk computations," Monte Carlo Methods and Applications, De Gruyter, vol. 23(1), pages 21-42, March.
    20. Seyed Amir Hejazi & Kenneth R. Jackson & Guojun Gan, 2017. "A Spatial Interpolation Framework for Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1701.04134, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:16-:d:318508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.