IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i1p21-d323720.html
   My bibliography  Save this article

Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies

Author

Listed:
  • Anne-Sophie Krah

    (Department of Mathematics, TU Kaiserslautern, Erwin-Schrödinger-Straße, Geb. 48, 67653 Kaiserslautern, Germany)

  • Zoran Nikolić

    (Mathematical Institute, University Cologne, Weyertal 86-90, 50931 Cologne, Germany)

  • Ralf Korn

    (Department of Mathematics, TU Kaiserslautern, Erwin-Schrödinger-Straße, Geb. 48, 67653 Kaiserslautern, Germany
    Department Financial Mathematics, Fraunhofer ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany)

Abstract

Under the Solvency II regime, life insurance companies are asked to derive their solvency capital requirements from the full loss distributions over the coming year. Since the industry is currently far from being endowed with sufficient computational capacities to fully simulate these distributions, the insurers have to rely on suitable approximation techniques such as the least-squares Monte Carlo (LSMC) method. The key idea of LSMC is to run only a few wisely selected simulations and to process their output further to obtain a risk-dependent proxy function of the loss. In this paper, we present and analyze various adaptive machine learning approaches that can take over the proxy modeling task. The studied approaches range from ordinary and generalized least-squares regression variants over generalized linear model (GLM) and generalized additive model (GAM) methods to multivariate adaptive regression splines (MARS) and kernel regression routines. We justify the combinability of their regression ingredients in a theoretical discourse. Further, we illustrate the approaches in slightly disguised real-world experiments and perform comprehensive out-of-sample tests.

Suggested Citation

  • Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2020. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 8(1), pages 1-79, February.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:21-:d:323720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/1/21/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/1/21/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
    2. Magnus, Jan R., 1978. "Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covariance matrix," Journal of Econometrics, Elsevier, vol. 7(3), pages 281-312, April.
    3. S. N. Wood, 2000. "Modelling and smoothing parameter estimation with multiple quadratic penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 413-428.
    4. Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2018. "A Least-Squares Monte Carlo Framework in Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 6(2), pages 1-26, June.
    5. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
    6. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    7. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    8. Weiß Christian & Nikolić Zoran, 2019. "An aspect of optimal regression design for LSMC," Monte Carlo Methods and Applications, De Gruyter, vol. 25(4), pages 283-290, December.
    9. Giampiero Marra & Simon N. Wood, 2012. "Coverage Properties of Confidence Intervals for Generalized Additive Model Components," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(1), pages 53-74, March.
    10. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    11. Simon N. Wood & Yannig Goude & Simon Shaw, 2015. "Generalized additive models for large data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(1), pages 139-155, January.
    12. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    13. Bauer, Daniel & Reuss, Andreas & Singer, Daniela, 2012. "On the Calculation of the Solvency Capital Requirement Based on Nested Simulations," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 453-499, November.
    14. Christophe Dutang, 2017. "Some explanations about the IWLS algorithm to fit generalized linear models," Working Papers hal-01577698, HAL.
    15. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    2. Nelson Kemboi Yego & Juma Kasozi & Joseph Nkurunziza, 2021. "A Comparative Analysis of Machine Learning Models for the Prediction of Insurance Uptake in Kenya," Data, MDPI, vol. 6(11), pages 1-17, November.
    3. Borgonovo, Emanuele & Clemente, Gian Paolo & Rabitti, Giovanni, 2024. "Why insurance regulators need to require sensitivity settings of internal models for their approval," Finance Research Letters, Elsevier, vol. 60(C).
    4. E. Lorenzo & G. Piscopo & M. Sibillo, 2024. "Addressing the economic and demographic complexity via a neural network approach: risk measures for reverse mortgages," Computational Management Science, Springer, vol. 21(1), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne-Sophie Krah & Zoran Nikoli'c & Ralf Korn, 2019. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Papers 1909.02182, arXiv.org.
    2. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    3. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    4. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    5. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    6. Aur'elien Alfonsi & Bernard Lapeyre & J'er^ome Lelong, 2022. "How many inner simulations to compute conditional expectations with least-square Monte Carlo?," Papers 2209.04153, arXiv.org, revised May 2023.
    7. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
    8. Musolesi Antonio & Mazzanti Massimiliano, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 521-541, December.
    9. Aurélien Alfonsi & Bernard Lapeyre & Jérôme Lelong, 2022. "How many inner simulations to compute conditional expectations with least-square Monte Carlo?," Working Papers hal-03770051, HAL.
    10. Aurélien Alfonsi & Bernard Lapeyre & Jérôme Lelong, 2023. "How many inner simulations to compute conditional expectations with least-square Monte Carlo?," Post-Print hal-03770051, HAL.
    11. Sylvie Charlot & Riccardo Crescenzi & Antonio Musolesi, 2014. "Augmented and Unconstrained: revisiting the Regional Knowledge Production Function," SEEDS Working Papers 2414, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    12. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    13. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
    14. Baccini, Michela & Biggeri, Annibale & Lagazio, Corrado & Lertxundi, Aitana & Saez, Marc, 2007. "Parametric and semi-parametric approaches in the analysis of short-term effects of air pollution on health," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4324-4336, May.
    15. Aurélien Alfonsi & Bernard Lapeyre & Jérôme Lelong, 2023. "How Many Inner Simulations to Compute Conditional Expectations with Least-square Monte Carlo?," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-25, September.
    16. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
    17. Mazzanti, Massimiliano & Musolesi, Antonio, 2013. "Nonlinearity, Heterogeneity and Unobserved Effects in the CO2-income Relation for Advanced Countries," Climate Change and Sustainable Development 162374, Fondazione Eni Enrico Mattei (FEEM).
    18. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
    19. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    20. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:21-:d:323720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.