IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v23y2020i01ns021902492050003x.html
   My bibliography  Save this article

Branching Particle Pricers With Heston Examples

Author

Listed:
  • MICHAEL A. KOURITZIN

    (Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton (Alberta), T6G 2G1, Canada)

  • ANNE MACKAY

    (Department of Mathematics, Université du Québec à Montréal, Montréal (Québec), H3C 3P8, Canada)

Abstract

The use of sequential Monte Carlo within simulation for path-dependent option pricing is proposed and evaluated. Recently, it was shown that explicit solutions and importance sampling are valuable for efficient simulation of spot price and volatility, especially for purposes of path-dependent option pricing. The resulting simulation algorithm is an analog to the weighted particle filtering algorithm that might be improved by resampling or branching. Indeed, some branching algorithms are shown herein to improve pricing performance substantially while some resampling algorithms are shown to be less suitable in certain cases. A historical property is given and explained as the distinguishing feature between the sequential Monte Carlo algorithms that work on path-dependent option pricing and those that do not. In particular, it is recommended to use the so-called effective particle branching algorithm within importance-sampling Monte Carlo methods for path-dependent option pricing. All recommendations are based upon numeric comparison of option pricing problems in the Heston model.

Suggested Citation

  • Michael A. Kouritzin & Anne Mackay, 2020. "Branching Particle Pricers With Heston Examples," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-29, February.
  • Handle: RePEc:wsi:ijtafx:v:23:y:2020:i:01:n:s021902492050003x
    DOI: 10.1142/S021902492050003X
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/abs/10.1142/S021902492050003X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S021902492050003X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    3. Carriere, Jacques F., 1996. "Valuation of the early-exercise price for options using simulations and nonparametric regression," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 19-30, December.
    4. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    7. Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Li Tseng & Daniel Wei-Chung Miao & San-Lin Chung & Pai-Ta Shih, 2021. "How Much Do Negative Probabilities Matter in Option Pricing?: A Case of a Lattice-Based Approach for Stochastic Volatility Models," JRFM, MDPI, vol. 14(6), pages 1-32, May.
    2. Dashti Moghaddam, M. & Serota, R.A., 2021. "Combined multiplicative–Heston model for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael A. Kouritzin & Anne MacKay, 2019. "Branching Particle Pricers with Heston Examples," Papers 1907.00219, arXiv.org, revised Nov 2019.
    2. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    3. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    4. Wei, Wei & Zhu, Dan, 2022. "Generic improvements to least squares monte carlo methods with applications to optimal stopping problems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1132-1144.
    5. Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
    6. Maximilian Mair & Jan Maruhn, 2013. "On the primal-dual algorithm for callable Bermudan options," Review of Derivatives Research, Springer, vol. 16(1), pages 79-110, April.
    7. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    8. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    9. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    10. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    12. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    13. Belomestny, Denis & Milstein, Grigori N. & Spokoiny, Vladimir, 2006. "Regression methods in pricing American and Bermudan options using consumption processes," SFB 649 Discussion Papers 2006-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    15. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    16. Louis Bhim & Reiichiro Kawai, 2018. "Smooth Upper Bounds For The Price Function Of American Style Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-38, February.
    17. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    18. S'ergio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys de Souza, 2017. "Discrete-type approximations for non-Markovian optimal stopping problems: Part II," Papers 1707.05250, arXiv.org, revised Dec 2019.
    19. Jérôme Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Working Papers hal-01983115, HAL.
    20. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:23:y:2020:i:01:n:s021902492050003x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.