IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.15332.html
   My bibliography  Save this paper

Quantum algorithm for stochastic optimal stopping problems with applications in finance

Author

Listed:
  • Jo~ao F. Doriguello
  • Alessandro Luongo
  • Jinge Bao
  • Patrick Rebentrost
  • Miklos Santha

Abstract

The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in stochastic optimal stopping theory. In this work, we propose a quantum LSM based on quantum access to a stochastic process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo. For this algorithm, we elucidate the intricate interplay of function approximation and quantum algorithms for Monte Carlo. Our algorithm achieves a nearly quadratic speedup in the runtime compared to the LSM algorithm under some mild assumptions. Specifically, our quantum algorithm can be applied to American option pricing and we analyze a case study for the common situation of Brownian motion and geometric Brownian motion processes.

Suggested Citation

  • Jo~ao F. Doriguello & Alessandro Luongo & Jinge Bao & Patrick Rebentrost & Miklos Santha, 2021. "Quantum algorithm for stochastic optimal stopping problems with applications in finance," Papers 2111.15332, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2111.15332
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.15332
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kazuya Kaneko & Koichi Miyamoto & Naoyuki Takeda & Kazuyoshi Yoshino, 2020. "Quantum Pricing with a Smile: Implementation of Local Volatility Model on Quantum Computer," Papers 2007.01467, arXiv.org.
    2. Daniel Z. Zanger, 2018. "Convergence Of A Least†Squares Monte Carlo Algorithm For American Option Pricing With Dependent Sample Data," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 447-479, January.
    3. Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
    4. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    5. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    6. Shouvanik Chakrabarti & Rajiv Krishnakumar & Guglielmo Mazzola & Nikitas Stamatopoulos & Stefan Woerner & William J. Zeng, 2020. "A Threshold for Quantum Advantage in Derivative Pricing," Papers 2012.03819, arXiv.org, revised May 2021.
    7. Daniel Zanger, 2009. "Convergence of a Least-Squares Monte Carlo Algorithm for Bounded Approximating Sets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 123-150.
    8. Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2018. "A Least-Squares Monte Carlo Framework in Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 6(2), pages 1-26, June.
    9. Chen Liu & Henry Schellhorn & Qidi Peng, 2019. "American Option Pricing With Regression: Convergence Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-31, December.
    10. Lars Stentoft, 2004. "Assessing the Least Squares Monte-Carlo Approach to American Option Valuation," Review of Derivatives Research, Springer, vol. 7(2), pages 129-168, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong Yu Han & Patrick Rebentrost, 2022. "Quantum advantage for multi-option portfolio pricing and valuation adjustments," Papers 2203.04924, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Z. Zanger, 2020. "General Error Estimates for the Longstaff–Schwartz Least-Squares Monte Carlo Algorithm," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 923-946, August.
    2. Zhiyi Shen & Chengguo Weng, 2019. "A Backward Simulation Method for Stochastic Optimal Control Problems," Papers 1901.06715, arXiv.org.
    3. Daniel Zanger, 2013. "Quantitative error estimates for a least-squares Monte Carlo algorithm for American option pricing," Finance and Stochastics, Springer, vol. 17(3), pages 503-534, July.
    4. Hampus Engsner, 2021. "Least Squares Monte Carlo applied to Dynamic Monetary Utility Functions," Papers 2101.10947, arXiv.org, revised Apr 2021.
    5. Chen Liu & Henry Schellhorn & Qidi Peng, 2019. "American Option Pricing With Regression: Convergence Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-31, December.
    6. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
    7. Maciej Klimek & Marcin Pitera, 2014. "The least squares method for option pricing revisited," Papers 1404.7438, arXiv.org, revised Nov 2015.
    8. Jeechul Woo & Chenru Liu & Jaehyuk Choi, 2024. "Leave‐one‐out least squares Monte Carlo algorithm for pricing Bermudan options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1404-1428, August.
    9. Reesor, R. Mark & Stentoft, Lars & Zhu, Xiaotian, 2024. "A critical analysis of the Weighted Least Squares Monte Carlo method for pricing American options," Finance Research Letters, Elsevier, vol. 64(C).
    10. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    11. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Discussion Paper 2002-99, Tilburg University, Center for Economic Research.
    12. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    13. Nordahl, Helge A., 2008. "Valuation of life insurance surrender and exchange options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 909-919, June.
    14. Fabozzi, Frank J. & Paletta, Tommaso & Tunaru, Radu, 2017. "An improved least squares Monte Carlo valuation method based on heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 263(2), pages 698-706.
    15. Alexander Boogert & Cyriel de Jong, 2007. "Gas Storage Valuation Using a Monte Carlo Method," Birkbeck Working Papers in Economics and Finance 0704, Birkbeck, Department of Economics, Mathematics & Statistics.
    16. Zhu, Lei & Zhang, ZhongXiang & Fan, Ying, 2015. "Overseas oil investment projects under uncertainty: How to make informed decisions?," Journal of Policy Modeling, Elsevier, vol. 37(5), pages 742-762.
    17. Nan Chen & Yanchu Liu, 2014. "American Option Sensitivities Estimation via a Generalized Infinitesimal Perturbation Analysis Approach," Operations Research, INFORMS, vol. 62(3), pages 616-632, June.
    18. Joseph Y. J. Chow & Hamid R. Sayarshad, 2016. "Reference Policies for Non-myopic Sequential Network Design and Timing Problems," Networks and Spatial Economics, Springer, vol. 16(4), pages 1183-1209, December.
    19. Mario Cerrato, 2008. "Valuing American Derivatives by Least Squares Methods," Working Papers 2008_12, Business School - Economics, University of Glasgow, revised Sep 2008.
    20. Sérgio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys Souza, 2020. "Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1221-1255, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.15332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.