IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v8y2021i2d10.1007_s40745-019-00221-8.html
   My bibliography  Save this article

Generalized Count Data Regression Models and Their Applications to Health Care Data

Author

Listed:
  • Carl Lee

    (Central Michigan University)

  • Felix Famoye

    (Central Michigan University)

  • Alfred Akinsete

    (Marshall University)

Abstract

A method for developing generalized parametric regression models for count data is proposed and studied. The method is based on the framework of the T-geometric family of distributions. A T-geometric family consists of discrete distributions, which are analogues to the continuous distributions for the random variable T. The general methodology is applied to derive some generalized regression models for count data. These regression models can fit count data that are under-dispersed, equi-dispersed or over-dispersed. The extension to model truncated or inflated data is addressed. Some new generalized T-geometric regression models are applied to real world data sets to illustrate the flexibility of the models. The models were fitted to four response variables from health care data and their performance compared. No single regression model outperforms other models for all the four response variables. Thus, a researcher should evaluate different models before selecting a final regression model for a count response variable.

Suggested Citation

  • Carl Lee & Felix Famoye & Alfred Akinsete, 2021. "Generalized Count Data Regression Models and Their Applications to Health Care Data," Annals of Data Science, Springer, vol. 8(2), pages 367-386, June.
  • Handle: RePEc:spr:aodasc:v:8:y:2021:i:2:d:10.1007_s40745-019-00221-8
    DOI: 10.1007/s40745-019-00221-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-019-00221-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-019-00221-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Congdon, 2017. "Quantile regression for overdispersed count data: a hierarchical method," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.
    2. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, October.
    3. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    4. Mullahy, John, 1997. "Heterogeneity, Excess Zeros, and the Structure of Count Data Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 337-350, May-June.
    5. A. C. Cameron & P. K. Trivedi & Frank Milne & J. Piggott, 1988. "A Microeconometric Model of the Demand for Health Care and Health Insurance in Australia," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 55(1), pages 85-106.
    6. Felix Famoye & Carl Lee, 2017. "Exponentiated-exponential geometric regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2963-2977, December.
    7. Cameron, A Colin & Johansson, Per, 1997. "Count Data Regression Using Series Expansions: With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 203-223, May-June.
    8. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Mainardi, 2003. "Testing convergence in life expectancies: count regression models on panel data," Prague Economic Papers, Prague University of Economics and Business, vol. 2003(4), pages 350-370.
    2. Pérez-Granja, Ubay & Pérez-Sánchez, José María & Pérez-Rodríguez, Jorge V., 2024. "Assessing economic performance and aviation accidents using zero-inflated and over-dispersed panel data models," Journal of Air Transport Management, Elsevier, vol. 118(C).
    3. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    4. Gregori Baetschmann & Rainer Winkelmann, 2014. "A dynamic hurdle model for zero-inflated count data: with an application to health care utilization," ECON - Working Papers 151, Department of Economics - University of Zurich.
    5. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    6. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    7. Bono, Pierre-Henri & David, Quentin & Desbordes, Rodolphe & Py, Loriane, 2022. "Metro infrastructure and metropolitan attractiveness," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    8. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    9. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    10. Ulf‐ G. Gerdtham, 1997. "Equity in Health Care Utilization: Further Tests Based on Hurdle Models and Swedish Micro Data," Health Economics, John Wiley & Sons, Ltd., vol. 6(3), pages 303-319, May.
    11. Jaeun Shin & Sangho Moon, 2007. "Do Hmo Plans Reduce Health Care Expenditure In The Private Sector?," Economic Inquiry, Western Economic Association International, vol. 45(1), pages 82-99, January.
    12. Morescalchi, Andrea & Pammolli, Fabio & Penner, Orion & Petersen, Alexander M. & Riccaboni, Massimo, 2015. "The evolution of networks of innovators within and across borders: Evidence from patent data," Research Policy, Elsevier, vol. 44(3), pages 651-668.
    13. A. Colin Cameron & Per Johansson, 2004. "Bivariate Count Data Regression Using Series Expansions: With Applications," Working Papers 9815, University of California, Davis, Department of Economics.
    14. María Del Carmen Melgar & José Antonio Ordaz & Flor María Guerrero, 2006. "Une étude économétrique du nombre d'accidents dans le secteur de l'assurance automobile," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 49(2), pages 169-183.
    15. Sarni Maniar Berliana & Purhadi & Sutikno & Santi Puteri Rahayu, 2020. "Parameter Estimation and Hypothesis Testing of Geographically Weighted Multivariate Generalized Poisson Regression," Mathematics, MDPI, vol. 8(9), pages 1-14, September.
    16. Abdul Halim, Zairihan & How, Janice & Verhoeven, Peter & Hassan, M. Kabir, 2020. "Asymmetric information and securitization design in Islamic capital markets," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    17. Emerson Gomes Santos & Renato Garcia & Veneziano Araujo & Suelene Mascarini & Ariana Costa, 2021. "Spatial and non‐spatial proximity in university–industry collaboration: Mutual reinforcement and decreasing effects," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(4), pages 1249-1261, August.
    18. Stéphanie Truchet & Nicolas Mauhe & Marie Herve, 2017. "Veterinarian shortage areas: what determines the location of new graduates?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 255-282, December.
    19. Drivas, Kyriakos & Economidou, Claire & Karamanis, Dimitrios & Sanders, Mark, 2020. "Mobility of highly skilled individuals and local innovation activity," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    20. Hossein Kavand & Marcel Voia, 2018. "Estimation of Health Care Demand and its Implication on Income Effects of Individuals," Springer Proceedings in Business and Economics, in: William H. Greene & Lynda Khalaf & Paul Makdissi & Robin C. Sickles & Michael Veall & Marcel-Cristia (ed.), Productivity and Inequality, pages 275-304, Springer.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:8:y:2021:i:2:d:10.1007_s40745-019-00221-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.