IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v48y2019i21p5370-5386.html
   My bibliography  Save this article

Robust variable selection in finite mixture of regression models using the t distribution

Author

Listed:
  • Lin Dai
  • Junhui Yin
  • Zhengfen Xie
  • Liucang Wu

Abstract

Variable selection in finite mixture of regression (FMR) models is frequently used in statistical modeling. The majority of applications of variable selection in FMR models use a normal distribution for regression error. Such assumptions are unsuitable for a set of data containing a group or groups of observations with heavy tails and outliers. In this paper, we introduce a robust variable selection procedure for FMR models using the t distribution. With appropriate selection of the tuning parameters, the consistency and the oracle property of the regularized estimators are established. To estimate the parameters of the model, we develop an EM algorithm for numerical computations and a method for selecting tuning parameters adaptively. The parameter estimation performance of the proposed model is evaluated through simulation studies. The application of the proposed model is illustrated by analyzing a real data set.

Suggested Citation

  • Lin Dai & Junhui Yin & Zhengfen Xie & Liucang Wu, 2019. "Robust variable selection in finite mixture of regression models using the t distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(21), pages 5370-5386, November.
  • Handle: RePEc:taf:lstaxx:v:48:y:2019:i:21:p:5370-5386
    DOI: 10.1080/03610926.2018.1513143
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2018.1513143
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2018.1513143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:48:y:2019:i:21:p:5370-5386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.