IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v9y2015i02p304-321_00.html
   My bibliography  Save this article

Experience rating with Poisson mixtures

Author

Listed:
  • Brown, Garfield O.
  • Buckley, Winston S.

Abstract

We propose a Poisson mixture model for count data to determine the number of groups in a Group Life insurance portfolio consisting of claim numbers or deaths. We take a non-parametric Bayesian approach to modelling this mixture distribution using a Dirichlet process prior and use reversible jump Markov chain Monte Carlo to estimate the number of components in the mixture. Unlike Haastrup, we show that the assumption of identical heterogeneity for all groups may not hold as 88% of the posterior probability is assigned to models with two or three components, and 11% to models with four or five components, whereas models with one component are never visited. Our major contribution is showing how to account for both model uncertainty and parameter estimation within a single framework.

Suggested Citation

  • Brown, Garfield O. & Buckley, Winston S., 2015. "Experience rating with Poisson mixtures," Annals of Actuarial Science, Cambridge University Press, vol. 9(2), pages 304-321, September.
  • Handle: RePEc:cup:anacsi:v:9:y:2015:i:02:p:304-321_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499515000019/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iain L. MacDonald, 2021. "Is EM really necessary here? Examples where it seems simpler not to use EM," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 629-647, December.
    2. Tatjana Miljkovic & Daniel Fernández, 2018. "On Two Mixture-Based Clustering Approaches Used in Modeling an Insurance Portfolio," Risks, MDPI, vol. 6(2), pages 1-18, May.
    3. Mengyu Yu & Mazie Krehbiel & Samantha Thompson & Tatjana Miljkovic, 2020. "An exploration of gender gap using advanced data science tools: actuarial research community," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 767-789, May.
    4. Antonio Canale & Igor Prünster, 2017. "Robustifying Bayesian nonparametric mixtures for count data," Biometrics, The International Biometric Society, vol. 73(1), pages 174-184, March.
    5. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    6. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    7. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:9:y:2015:i:02:p:304-321_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.