IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i7p713-d524075.html
   My bibliography  Save this article

A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions

Author

Listed:
  • Higinio Ramos

    (Department of Applied Mathematics, Universidad de Salamanca, 37008 Salamanca, Spain
    These authors contributed equally to this work.)

  • Ridwanulahi Abdulganiy

    (Distance Learning Institute, University of Lagos, Lagos Mainland 101017, Nigeria
    These authors contributed equally to this work.)

  • Ruth Olowe

    (Department of Mathematics, University of Lagos, Lagos Mainland 101017, Nigeria
    These authors contributed equally to this work.)

  • Samuel Jator

    (Department of Mathematics and Statistics, Austin Peay State University, Clarksville, TN 37044, USA
    These authors contributed equally to this work.)

Abstract

One of the well-known schemes for the direct numerical integration of second-order initial-value problems is due to Falkner. This paper focuses on the construction of a family of adapted block Falkner methods which are frequency dependent for the direct numerical solution of second-order initial value problems with oscillatory solutions. The techniques of collocation and interpolation are adopted here to derive the new methods. The study of the properties of the proposed adapted block Falkner methods reveals that they are consistent and zero-stable, and thus, convergent. Furthermore, the stability analysis and the algebraic order conditions of the proposed methods are established. As may be seen from the numerical results, the resulting family is efficient and competitive compared to some recent methods in the literature.

Suggested Citation

  • Higinio Ramos & Ridwanulahi Abdulganiy & Ruth Olowe & Samuel Jator, 2021. "A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:713-:d:524075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/7/713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/7/713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ch. TSITOURAS, 2006. "Explicit Eighth Order Two-Step Methods With Nine Stages For Integrating Oscillatory Problems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 861-876.
    2. Li, Jiyong, 2017. "A family of improved Falkner-type methods for oscillatory systems," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 345-357.
    3. Li, Jiyong, 2018. "Trigonometrically fitted three-derivative Runge–Kutta methods for solving oscillatory initial value problems," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 103-117.
    4. Franco, J.M. & Gómez, I., 2014. "Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 643-657.
    5. F. F. Ngwane & S. N. Jator, 2017. "A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems," International Journal of Differential Equations, Hindawi, vol. 2017, pages 1-14, January.
    6. Ramos, Higinio & Rufai, M.A., 2018. "Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 231-245.
    7. T. E. Simos, 2002. "DISSIPATIVE TRIGONOMETRICALLY-FITTED METHODS FOR SECOND ORDER IVPsWITH OSCILLATING SOLUTION," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(10), pages 1333-1345.
    8. Samuel N. Jator & Kindyl L. King, 2018. "Integrating Oscillatory General Second-Order Initial Value Problems Using a Block Hybrid Method of Order 11," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-15, June.
    9. Ramos, Higinio & Singh, Gurjinder & Kanwar, V. & Bhatia, Saurabh, 2016. "An efficient variable step-size rational Falkner-type method for solving the special second-order IVP," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 39-51.
    10. F. F. Ngwane & S. N. Jator, 2015. "Solving the Telegraph and Oscillatory Differential Equations by a Block Hybrid Trigonometrically Fitted Algorithm," International Journal of Differential Equations, Hindawi, vol. 2015, pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qureshi, Sania & Ramos, Higinio & Soomro, Amanullah & Akinfenwa, Olusheye Aremu & Akanbi, Moses Adebowale, 2024. "Numerical integration of stiff problems using a new time-efficient hybrid block solver based on collocation and interpolation techniques," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 237-252.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Higinio Ramos & Samuel N. Jator & Mark I. Modebei, 2020. "Efficient k -Step Linear Block Methods to Solve Second Order Initial Value Problems Directly," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    2. Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    3. Ramos, Higinio & Rufai, M.A., 2019. "A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 139-155.
    4. Reem Allogmany & Fudziah Ismail, 2020. "Implicit Three-Point Block Numerical Algorithm for Solving Third Order Initial Value Problem Directly with Applications," Mathematics, MDPI, vol. 8(10), pages 1-16, October.
    5. Denis Butusov, 2021. "Adaptive Stepsize Control for Extrapolation Semi-Implicit Multistep ODE Solvers," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
    6. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Tamara V. Karpukhina & Theodore E. Simos & Charalampos Tsitouras, 2021. "Sixth Order Numerov-Type Methods with Coefficients Trained to Perform Best on Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(21), pages 1-12, October.
    7. Sunday, Joshua & Shokri, Ali & Mahwash Kamoh, Nathaniel & Cleofas Dang, Bwebum & Idrisoglu Mahmudov, Nazim, 2024. "A computational approach to solving some applied rigid second-order problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 121-138.
    8. Tsitouras, Ch., 2014. "On fitted modifications of Runge–Kutta–Nyström pairs," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 416-423.
    9. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrey V. Chukalin & Theodore E. Simos & Charalampos Tsitouras, 2021. "Eighth Order Two-Step Methods Trained to Perform Better on Keplerian-Type Orbits," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    10. Lee, K.C. & Nazar, R. & Senu, N. & Ahmadian, A., 2024. "A promising exponentially-fitted two-derivative Runge–Kutta–Nyström method for solving y′′=f(x,y): Application to Verhulst logistic growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 28-49.
    11. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrey V. Chukalin & Theodore E. Simos & Charalampos Tsitouras, 2021. "Evolutionary Derivation of Runge–Kutta Pairs of Orders 5(4) Specially Tuned for Problems with Periodic Solutions," Mathematics, MDPI, vol. 9(18), pages 1-11, September.
    12. Ramos, Higinio & Rufai, M.A., 2018. "Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 231-245.
    13. Kinda Abuasbeh & Sania Qureshi & Amanullah Soomro & Muath Awadalla, 2023. "An Optimal Family of Block Techniques to Solve Models of Infectious Diseases: Fixed and Adaptive Stepsize Strategies," Mathematics, MDPI, vol. 11(5), pages 1-23, February.
    14. Janez Urevc & Miroslav Halilovič, 2021. "Enhancing Accuracy of Runge–Kutta-Type Collocation Methods for Solving ODEs," Mathematics, MDPI, vol. 9(2), pages 1-21, January.
    15. Ramos, Higinio & Singh, Gurjinder, 2022. "Solving second order two-point boundary value problems accurately by a third derivative hybrid block integrator," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    16. Houssem Jerbi & Sondess Ben Aoun & Mohamed Omri & Theodore E. Simos & Charalampos Tsitouras, 2022. "A Neural Network Type Approach for Constructing Runge–Kutta Pairs of Orders Six and Five That Perform Best on Problems with Oscillatory Solutions," Mathematics, MDPI, vol. 10(5), pages 1-10, March.
    17. Khalsaraei, Mohammad Mehdizadeh & Shokri, Ali & Ramos, Higinio & Heydari, Shahin, 2021. "A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 397-410.
    18. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Ekaterina V. Tsvetova & Theodore E. Simos & Charalampos Tsitouras, 2022. "On a New Family of Runge–Kutta–Nyström Pairs of Orders 6(4)," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    19. Li, Jiyong, 2021. "Convergence analysis of a symmetric exponential integrator Fourier pseudo-spectral scheme for the Klein–Gordon–Dirac equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 691-713.
    20. Obaid Alshammari & Sondess Ben Aoun & Mourad Kchaou & Theodore E. Simos & Charalampos Tsitouras & Houssem Jerbi, 2024. "Eighth-Order Numerov-Type Methods Using Varying Step Length," Mathematics, MDPI, vol. 12(14), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:713-:d:524075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.