IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v219y2024icp28-49.html
   My bibliography  Save this article

A promising exponentially-fitted two-derivative Runge–Kutta–Nyström method for solving y′′=f(x,y): Application to Verhulst logistic growth model

Author

Listed:
  • Lee, K.C.
  • Nazar, R.
  • Senu, N.
  • Ahmadian, A.

Abstract

Explicit exponentially-fitted two-derivative Runge–Kutta–Nyström method with single f-function and multiple third derivatives is proposed for solving special type of second-order ordinary differential equations with exponential solutions. B-series and rooted tree theory for the proposed method are developed for the derivation of order conditions. Then, we build frequency-dependent coefficients for the proposed method by integrating the second-order initial value problem exactly with solution in the linear composition of set functions eλt and e−λt with λ∈R. An exponentially-fitted two-derivative Runge–Kutta–Nyström method with three stages fifth order is derived. Linear stability and stability region of the proposed method are analyzed. The numerical tests show that the proposed method is more effective than other existing methods with similar algebraic order in the integration of special type of second-order ordinary differential equations with exponential solutions. Also, the proposed method is used to solve a famous application problem, Verhulst logistic growth model and the result shows the proposed method still works effectively for solving this model.

Suggested Citation

  • Lee, K.C. & Nazar, R. & Senu, N. & Ahmadian, A., 2024. "A promising exponentially-fitted two-derivative Runge–Kutta–Nyström method for solving y′′=f(x,y): Application to Verhulst logistic growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 28-49.
  • Handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:28-49
    DOI: 10.1016/j.matcom.2023.12.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423005256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.12.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehigie, Julius O. & Luan, Vu Thai & Okunuga, Solomon A. & You, Xiong, 2022. "Exponentially fitted two-derivative DIRK methods for oscillatory differential equations," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    2. F. F. Ngwane & S. N. Jator, 2017. "A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems," International Journal of Differential Equations, Hindawi, vol. 2017, pages 1-14, January.
    3. J. M. Franco & L. Rández, 2018. "Eighth-order explicit two-step hybrid methods with symmetric nodes and weights for solving orbital and oscillatory IVPs," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(01), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrey V. Chukalin & Theodore E. Simos & Charalampos Tsitouras, 2021. "Eighth Order Two-Step Methods Trained to Perform Better on Keplerian-Type Orbits," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    2. Higinio Ramos & Ridwanulahi Abdulganiy & Ruth Olowe & Samuel Jator, 2021. "A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    3. Obaid Alshammari & Sondess Ben Aoun & Mourad Kchaou & Theodore E. Simos & Charalampos Tsitouras & Houssem Jerbi, 2024. "Eighth-Order Numerov-Type Methods Using Varying Step Length," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
    4. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Tamara V. Karpukhina & Theodore E. Simos & Charalampos Tsitouras, 2021. "Sixth Order Numerov-Type Methods with Coefficients Trained to Perform Best on Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(21), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:28-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.