IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1752-d426503.html
   My bibliography  Save this article

Efficient k -Step Linear Block Methods to Solve Second Order Initial Value Problems Directly

Author

Listed:
  • Higinio Ramos

    (Department of Applied Mathematics, University of Salamanca, 37008 Salamanca, Spain
    These authors contributed equally to this work.)

  • Samuel N. Jator

    (Department of Mathematics and Statistics, Austin Peay State University Clarksville, Clarksville, TN 37044, USA
    These authors contributed equally to this work.)

  • Mark I. Modebei

    (Department of Mathematics Programme, National Mathematical Centre, Abuja 900211, Nigeria
    These authors contributed equally to this work.)

Abstract

There are dozens of block methods in literature intended for solving second order initial-value problems. This article aimed at the analysis of the efficiency of k -step block methods for directly solving general second-order initial-value problems. Each of these methods consists of a set of 2 k multi-step formulas (although we will see that this number can be reduced to k + 1 in case of a special equation) that provides approximate solutions at k grid points at once. The usual way to obtain these formulas is by using collocation and interpolation at different points, which are not all necessarily in the mesh (it may also be considered intra-step or off-step points). An important issue is that for each k , all of them are essentially the same method, although they can adopt different formulations. Nevertheless, the performance of those formulations is not the same. The analysis of the methods presented give some clues as how to select the most appropriate ones in terms of computational efficiency. The numerical experiments show that using the proposed formulations, the computing time can be reduced to less than half.

Suggested Citation

  • Higinio Ramos & Samuel N. Jator & Mark I. Modebei, 2020. "Efficient k -Step Linear Block Methods to Solve Second Order Initial Value Problems Directly," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1752-:d:426503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kasim Hussain & Fudziah Ismail & Norazak Senu, 2015. "Runge-Kutta Type Methods for Directly Solving Special Fourth-Order Ordinary Differential Equations," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, August.
    2. Ramos, Higinio & Popescu, Paul, 2018. "How many k-step linear block methods exist and which of them is the most efficient and simplest one?," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 296-309.
    3. Ramos, Higinio & Rufai, M.A., 2018. "Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 231-245.
    4. Ramos, Higinio & Rufai, M.A., 2019. "A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 139-155.
    5. Ramos, Higinio & Singh, Gurjinder & Kanwar, V. & Bhatia, Saurabh, 2016. "An efficient variable step-size rational Falkner-type method for solving the special second-order IVP," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 39-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    2. Khalsaraei, Mohammad Mehdizadeh & Shokri, Ali & Ramos, Higinio & Heydari, Shahin, 2021. "A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 397-410.
    3. Reem Allogmany & Fudziah Ismail, 2020. "Implicit Three-Point Block Numerical Algorithm for Solving Third Order Initial Value Problem Directly with Applications," Mathematics, MDPI, vol. 8(10), pages 1-16, October.
    4. Higinio Ramos & Ridwanulahi Abdulganiy & Ruth Olowe & Samuel Jator, 2021. "A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    5. Ramos, Higinio & Rufai, M.A., 2019. "A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 139-155.
    6. Ramos, Higinio & Singh, Gurjinder, 2022. "Solving second order two-point boundary value problems accurately by a third derivative hybrid block integrator," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    7. Denis Butusov, 2021. "Adaptive Stepsize Control for Extrapolation Semi-Implicit Multistep ODE Solvers," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
    8. Mohammad Mehdizadeh Khalsaraei & Ali Shokri & Higinio Ramos & Shao-Wen Yao & Maryam Molayi, 2022. "Efficient Numerical Solutions to a SIR Epidemic Model," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    9. Ramos, Higinio & Rufai, M.A., 2018. "Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 231-245.
    10. Mohd Nasir, Nadirah & Abdul Majid, Zanariah & Ismail, Fudziah & Bachok, Norfifah, 2021. "Direct integration of the third-order two point and multipoint Robin type boundary value problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 411-427.
    11. Tomar, Saurabh & Dhama, Soniya & Ramos, Higinio & Singh, Mehakpreet, 2023. "An efficient technique based on Green’s function for solving two-point boundary value problems and its convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 408-423.
    12. Kinda Abuasbeh & Sania Qureshi & Amanullah Soomro & Muath Awadalla, 2023. "An Optimal Family of Block Techniques to Solve Models of Infectious Diseases: Fixed and Adaptive Stepsize Strategies," Mathematics, MDPI, vol. 11(5), pages 1-23, February.
    13. Mufutau Ajani Rufai, 2022. "An Efficient Third-Derivative Hybrid Block Method for the Solution of Second-Order BVPs," Mathematics, MDPI, vol. 10(19), pages 1-15, October.
    14. Janez Urevc & Miroslav Halilovič, 2021. "Enhancing Accuracy of Runge–Kutta-Type Collocation Methods for Solving ODEs," Mathematics, MDPI, vol. 9(2), pages 1-21, January.
    15. Mohammad Mehdizadeh Khalsaraei & Ali Shokri & Samad Noeiaghdam & Maryam Molayi, 2021. "Nonstandard Finite Difference Schemes for an SIR Epidemic Model," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    16. Nadirah Mohd Nasir & Zanariah Abdul Majid & Fudziah Ismail & Norfifah Bachok, 2019. "Direct Integration of Boundary Value Problems Using the Block Method via the Shooting Technique Combined with Steffensen’s Strategy," Mathematics, MDPI, vol. 7(11), pages 1-16, November.
    17. Tafakkori–Bafghi, M. & Loghmani, G.B. & Heydari, M., 2022. "Numerical solution of two-point nonlinear boundary value problems via Legendre–Picard iteration method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 133-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1752-:d:426503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.