IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p950-d542419.html
   My bibliography  Save this article

Adaptive Stepsize Control for Extrapolation Semi-Implicit Multistep ODE Solvers

Author

Listed:
  • Denis Butusov

    (Youth Research Institute, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia)

Abstract

Developing new and efficient numerical integration techniques is of great importance in applied mathematics and computer science. Among the variety of available methods, multistep ODE solvers are broadly used in simulation software. Recently, semi-implicit integration proved to be an efficient compromise between implicit and explicit ODE solvers, and multiple high-performance semi-implicit methods were proposed. However, the computational efficiency of any ODE solver can be significantly increased through the introduction of an adaptive integration stepsize, but it requires the estimation of local truncation error. It is known that recently proposed extrapolation semi-implicit multistep methods (ESIMM) cannot operate with existing local truncation error (LTE) estimators, e.g., embedded methods approach, due to their specific right-hand side calculation algorithm. In this paper, we propose two different techniques for local truncation error estimation and study the performance of ESIMM methods with adaptive stepsize control. The first considered approach is based on two parallel semi-implicit solutions with different commutation orders. The second estimator, called the “double extrapolation” method, is a modification of the embedded method approach. The introduction of the double extrapolation LTE estimator allowed us to additionally increase the precision of the ESIMM solver. Using several known nonlinear systems, including stiff van der Pol oscillator, as the testbench, we explicitly show that ESIMM solvers can outperform both implicit and explicit linear multistep methods when implemented with an adaptive stepsize.

Suggested Citation

  • Denis Butusov, 2021. "Adaptive Stepsize Control for Extrapolation Semi-Implicit Multistep ODE Solvers," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:950-:d:542419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramos, Higinio & Rufai, M.A., 2018. "Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 231-245.
    2. Ramos, Higinio & Singh, Gurjinder & Kanwar, V. & Bhatia, Saurabh, 2016. "An efficient variable step-size rational Falkner-type method for solving the special second-order IVP," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 39-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petr Fedoseev & Artur Karimov & Vincent Legat & Denis Butusov, 2022. "Preference and Stability Regions for Semi-Implicit Composition Schemes," Mathematics, MDPI, vol. 10(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Higinio Ramos & Samuel N. Jator & Mark I. Modebei, 2020. "Efficient k -Step Linear Block Methods to Solve Second Order Initial Value Problems Directly," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    2. Higinio Ramos & Ridwanulahi Abdulganiy & Ruth Olowe & Samuel Jator, 2021. "A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    3. Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    4. Ramos, Higinio & Rufai, M.A., 2019. "A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 139-155.
    5. Reem Allogmany & Fudziah Ismail, 2020. "Implicit Three-Point Block Numerical Algorithm for Solving Third Order Initial Value Problem Directly with Applications," Mathematics, MDPI, vol. 8(10), pages 1-16, October.
    6. Ramos, Higinio & Rufai, M.A., 2018. "Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 231-245.
    7. Kinda Abuasbeh & Sania Qureshi & Amanullah Soomro & Muath Awadalla, 2023. "An Optimal Family of Block Techniques to Solve Models of Infectious Diseases: Fixed and Adaptive Stepsize Strategies," Mathematics, MDPI, vol. 11(5), pages 1-23, February.
    8. Janez Urevc & Miroslav Halilovič, 2021. "Enhancing Accuracy of Runge–Kutta-Type Collocation Methods for Solving ODEs," Mathematics, MDPI, vol. 9(2), pages 1-21, January.
    9. Ramos, Higinio & Singh, Gurjinder, 2022. "Solving second order two-point boundary value problems accurately by a third derivative hybrid block integrator," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    10. Khalsaraei, Mohammad Mehdizadeh & Shokri, Ali & Ramos, Higinio & Heydari, Shahin, 2021. "A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 397-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:950-:d:542419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.