IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3750274.html
   My bibliography  Save this article

Integrating Oscillatory General Second-Order Initial Value Problems Using a Block Hybrid Method of Order 11

Author

Listed:
  • Samuel N. Jator
  • Kindyl L. King

Abstract

In some cases, high-order methods are known to provide greater accuracy with larger step-sizes than lower order methods. Hence, in this paper, we present a Block Hybrid Method (BHM) of order 11 for directly solving systems of general second-order initial value problems (IVPs), including Hamiltonian systems and partial differential equations (PDEs), which arise in multiple areas of science and engineering. The BHM is formulated from a continuous scheme based on a hybrid method of a linear multistep type with several off-grid points and then implemented in a block-by-block manner. The properties of the BHM are discussed and the performance of the method is demonstrated on some numerical examples. In particular, the superiority of the BHM over the Generalized Adams Method (GAM) of order 11 is established numerically.

Suggested Citation

  • Samuel N. Jator & Kindyl L. King, 2018. "Integrating Oscillatory General Second-Order Initial Value Problems Using a Block Hybrid Method of Order 11," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-15, June.
  • Handle: RePEc:hin:jnlmpe:3750274
    DOI: 10.1155/2018/3750274
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/3750274.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/3750274.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/3750274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunday, Joshua & Shokri, Ali & Mahwash Kamoh, Nathaniel & Cleofas Dang, Bwebum & Idrisoglu Mahmudov, Nazim, 2024. "A computational approach to solving some applied rigid second-order problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 121-138.
    2. Higinio Ramos & Ridwanulahi Abdulganiy & Ruth Olowe & Samuel Jator, 2021. "A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(7), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3750274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.