IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i18p2306-d638511.html
   My bibliography  Save this article

Evolutionary Derivation of Runge–Kutta Pairs of Orders 5(4) Specially Tuned for Problems with Periodic Solutions

Author

Listed:
  • Vladislav N. Kovalnogov

    (Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Ruslan V. Fedorov

    (Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Andrey V. Chukalin

    (Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Theodore E. Simos

    (Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia
    College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40402, Taiwan
    Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641100, China)

  • Charalampos Tsitouras

    (General Department, Euripus Campus, National & Kapodistrian University of Athens, 34400 Athens, Greece
    Administration of Businesses and Organizations Department, Hellenic Open University, 26335 Patras, Greece)

Abstract

The purpose of the present work is to construct a new Runge–Kutta pair of orders five and four to outperform the state-of-the-art in these kind of methods when addressing problems with periodic solutions. We consider the family of such pairs that the celebrated Dormand–Prince pair also belongs. The chosen family comes with coefficients that all depend on five free parameters. These latter parameters are tuned in a way to furnish a new method that performs best on a couple of oscillators. Then, we observe that this trained pair outperforms other well known methods in the relevant literature in a standard set of problems with periodic solutions. This is remarkable since no special property holds such as high phase-lag order or an extended interval of periodicity.

Suggested Citation

  • Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrey V. Chukalin & Theodore E. Simos & Charalampos Tsitouras, 2021. "Evolutionary Derivation of Runge–Kutta Pairs of Orders 5(4) Specially Tuned for Problems with Periodic Solutions," Mathematics, MDPI, vol. 9(18), pages 1-11, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2306-:d:638511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/18/2306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/18/2306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franco, J.M. & Gómez, I., 2014. "Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 643-657.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arsen Palestini, 2022. "Preface to the Special Issue “Mathematical Modeling with Differential Equations in Physics, Chemistry, Biology, and Economics”," Mathematics, MDPI, vol. 10(10), pages 1-2, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Higinio Ramos & Ridwanulahi Abdulganiy & Ruth Olowe & Samuel Jator, 2021. "A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    2. Houssem Jerbi & Sondess Ben Aoun & Mohamed Omri & Theodore E. Simos & Charalampos Tsitouras, 2022. "A Neural Network Type Approach for Constructing Runge–Kutta Pairs of Orders Six and Five That Perform Best on Problems with Oscillatory Solutions," Mathematics, MDPI, vol. 10(5), pages 1-10, March.
    3. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Ekaterina V. Tsvetova & Theodore E. Simos & Charalampos Tsitouras, 2022. "On a New Family of Runge–Kutta–Nyström Pairs of Orders 6(4)," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    4. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Tamara V. Karpukhina & Theodore E. Simos & Charalampos Tsitouras, 2021. "Sixth Order Numerov-Type Methods with Coefficients Trained to Perform Best on Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(21), pages 1-12, October.
    5. Franco, J.M. & Khiar, Y. & Rández, L., 2015. "Two new embedded pairs of explicit Runge–Kutta methods adapted to the numerical solution of oscillatory problems," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 45-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2306-:d:638511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.