IDEAS home Printed from https://ideas.repec.org/a/hin/jnijde/9293530.html
   My bibliography  Save this article

A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems

Author

Listed:
  • F. F. Ngwane
  • S. N. Jator

Abstract

In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM), whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one-step hybrid trigonometrically fitted method with an off-grid point. We implement BHTRKNM in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHTRKNM is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.

Suggested Citation

  • F. F. Ngwane & S. N. Jator, 2017. "A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems," International Journal of Differential Equations, Hindawi, vol. 2017, pages 1-14, January.
  • Handle: RePEc:hin:jnijde:9293530
    DOI: 10.1155/2017/9293530
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJDE/2017/9293530.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJDE/2017/9293530.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/9293530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, K.C. & Nazar, R. & Senu, N. & Ahmadian, A., 2024. "A promising exponentially-fitted two-derivative Runge–Kutta–Nyström method for solving y′′=f(x,y): Application to Verhulst logistic growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 28-49.
    2. Higinio Ramos & Ridwanulahi Abdulganiy & Ruth Olowe & Samuel Jator, 2021. "A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(7), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnijde:9293530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.