IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2711-d664307.html
   My bibliography  Save this article

Spatio-Temporal Patterns of CO 2 Emissions and Influencing Factors in China Using ESDA and PLS-SEM

Author

Listed:
  • Bin Wang

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Qiuxia Zheng

    (Urban and Regional Development Research Department, Chongqing Academy of Economics Research, Chongqing 401147, China)

  • Ao Sun

    (School of Geography, South China Normal University, Guangzhou 510631, China)

  • Jie Bao

    (School of Business, Anhui University, Hefei 230601, China)

  • Dianting Wu

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

Abstract

Controlling carbon dioxide (CO 2 ) emissions is the foundation of China’s goals to reach its carbon peak by 2030 and carbon neutrality by 2060. This study aimed to explore the spatial and temporal patterns and driving factors of CO 2 emissions in China. First, we constructed a conceptual model of the factors influencing CO 2 emissions, including economic growth, industrial structure, energy consumption, urban development, foreign trade, and government management. Second, we selected 30 provinces in China from 2006 to 2019 as research objects and adopted exploratory spatial data analysis (ESDA) methods to analyse the spatio-temporal patterns and agglomeration characteristics of CO 2 emissions. Third, on the basis of 420 data samples from China, we used partial least squares structural equation modelling (PLS-SEM) to verify the validity of the conceptual model, analyse the reliability and validity of the measurement model, calculate the path coefficient, test the hypothesis, and estimate the predictive power of the structural model. Fourth, multigroup analysis (MGA) was used to compare differences in the influencing factors for CO 2 emissions during different periods and in various regions of China. The results and conclusions are as follows: (1) CO 2 emissions in China increased year by year from 2006 to 2019 but gradually decreased in the eastern, central, and western regions. The eastern coastal provinces show spatial agglomeration and CO 2 emission hotspots. (2) Confirmatory analysis showed that the measurement model had high reliability and validity; four latent variables (industrial structure, energy consumption, economic growth, and government management) passed the hypothesis test in the structural model and are the determinants of CO 2 emissions in China. Meanwhile, economic growth is a mediating variable of industrial structure, energy consumption, foreign trade, and government administration on CO 2 emissions. (3) The calculated results of the R 2 and Q 2 values were 76.3% and 75.4%, respectively, indicating that the structural equation model had substantial explanatory and high predictive power. (4) Taking two development stages and three main regions as control groups, we found significant differences between the paths affecting CO 2 emissions, which is consistent with China’s actual development and regional economic pattern. This study provides policy suggestions for CO 2 emission reduction and sustainable development in China.

Suggested Citation

  • Bin Wang & Qiuxia Zheng & Ao Sun & Jie Bao & Dianting Wu, 2021. "Spatio-Temporal Patterns of CO 2 Emissions and Influencing Factors in China Using ESDA and PLS-SEM," Mathematics, MDPI, vol. 9(21), pages 1-24, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2711-:d:664307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiankun, He & Zhiwei, Yu & Da, Zhang, 2012. "China's strategy for energy development and climate change mitigation," Energy Policy, Elsevier, vol. 51(C), pages 7-13.
    2. Chen, Yulong & Wang, Zheng & Zhong, Zhangqi, 2019. "CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China," Renewable Energy, Elsevier, vol. 131(C), pages 208-216.
    3. Zi Cao & Jie Wei, 2019. "Industrial Distribution and LMDI Decomposition of Trade‐Embodied CO2 in China," The Developing Economies, Institute of Developing Economies, vol. 57(3), pages 211-232, September.
    4. Fergus Green & Nicholas Stern, 2017. "China's changing economy: implications for its carbon dioxide emissions," Climate Policy, Taylor & Francis Journals, vol. 17(4), pages 423-442, May.
    5. Bingjie Xu & Ruoyu Zhong & Gal Hochman & Kangyin Dong, 2019. "The environmental consequences of fossil fuels in China: National and regional perspectives," Sustainable Development, John Wiley & Sons, Ltd., vol. 27(5), pages 826-837, September.
    6. Jeffrey D. Sachs & Guido Schmidt-Traub & Mariana Mazzucato & Dirk Messner & Nebojsa Nakicenovic & Johan Rockström, 2019. "Six Transformations to achieve the Sustainable Development Goals," Nature Sustainability, Nature, vol. 2(9), pages 805-814, September.
    7. Haitao Zheng & Jie Hu & Rong Guan & Shanshan Wang, 2016. "Examining Determinants of CO 2 Emissions in 73 Cities in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    8. Zhang, Lulu & Xiong, Lichun & Cheng, Baodong & Yu, Chang, 2018. "How does foreign trade influence China’s carbon productivity? Based on panel spatial lag model analysis," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 171-179.
    9. Li, Li & Hong, Xuefei & Peng, Ke, 2019. "A spatial panel analysis of carbon emissions, economic growth and high-technology industry in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 83-92.
    10. Lin, Boqiang & Jia, Zhijie, 2018. "The energy, environmental and economic impacts of carbon tax rate and taxation industry: A CGE based study in China," Energy, Elsevier, vol. 159(C), pages 558-568.
    11. Wenwen Li & Wenping Wang & Yu Wang & Yingbo Qin, 2017. "Industrial structure, technological progress and CO2 emissions in China: Analysis based on the STIRPAT framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1545-1564, September.
    12. Yuan, Jiahai & Xu, Yan & Hu, Zheng & Zhao, Changhong & Xiong, Minpeng & Guo, Jingsheng, 2014. "Peak energy consumption and CO2 emissions in China," Energy Policy, Elsevier, vol. 68(C), pages 508-523.
    13. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2008. "CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques," Energy, Elsevier, vol. 33(3), pages 492-499.
    14. Long, Ruyin & Shao, Tianxiang & Chen, Hong, 2016. "Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors," Applied Energy, Elsevier, vol. 166(C), pages 210-219.
    15. Soltani, Mohammad & Rahmani, Omeid & Ghasimi, Dara S.M. & Ghaderpour, Yousef & Pour, Amin Beiranvand & Misnan, Siti Hajar & Ngah, Ibrahim, 2020. "Impact of household demographic characteristics on energy conservation and carbon dioxide emission: Case from Mahabad city, Iran," Energy, Elsevier, vol. 194(C).
    16. Shu Yang & Dingtao Zhao & Yanrui Wu & Jin Fan, 2013. "Regional Variation in Carbon Emissions and its Driving Forces in China: An Index Decomposition Analysis," Energy & Environment, , vol. 24(7-8), pages 1249-1270, December.
    17. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    18. Lingyun He & Fang Yin & Zhangqi Zhong & Zhihua Ding, 2017. "The impact of local government investment on the carbon emissions reduction effect: An empirical analysis of panel data from 30 provinces and municipalities in China," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-20, July.
    19. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    20. Fan Zhang & Gui Jin & Junlong Li & Chao Wang & Ning Xu, 2020. "Study on Dynamic Total Factor Carbon Emission Efficiency in China’s Urban Agglomerations," Sustainability, MDPI, vol. 12(7), pages 1-17, March.
    21. Bin Wang & Jionghua Li & Ao Sun & Yongming Wang & Dianting Wu, 2019. "Residents’ Green Purchasing Intentions in a Developing-Country Context: Integrating PLS-SEM and MGA Methods," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    22. Filip Kokotovic & Petar Kurecic & Trina Mjeda, 2019. "Accomplishing the Sustainable Development Goal 13 - Climate Action and the Role of the European Union," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 17(1-B), pages 132-145.
    23. Wu Li & Shengchuan Zhao & Jingwen Ma & Wenwen Qin, 2021. "Investigating Regional and Generational Heterogeneity in Low-Carbon Travel Behavior Intention Based on a PLS-SEM Approach," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    24. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
    25. Hao Yu & Su-Yan Pan & Bao-Jun Tang & Zhi-Fu Mi & Yan Zhang & Yi-Ming Wei, 2014. "Urban energy consumption and CO2 emissions in Beijing: Current and Future," CEEP-BIT Working Papers 70, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    26. Duro, Juan Antonio & Padilla, Emilio, 2006. "International inequalities in per capita CO2 emissions: A decomposition methodology by Kaya factors," Energy Economics, Elsevier, vol. 28(2), pages 170-187, March.
    27. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    28. Sami Ben Jabeur & Asma Sghaier, 2018. "The relationship between energy, pollution, economic growth and corruption: A Partial Least Squares Structural Equation Modeling (PLS-SEM) approach," Economics Bulletin, AccessEcon, vol. 38(4), pages 1927-1946.
    29. Jingyuan Li & Jinhua Cheng & Beidi Diao & Yaqi Wu & Peiqi Hu & Shurui Jiang, 2021. "Social and Economic Factors of Industrial Carbon Dioxide in China: From the Perspective of Spatiotemporal Transition," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    30. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    31. Marko Sarstedt & Jun-Hwa Cheah, 2019. "Partial least squares structural equation modeling using SmartPLS: a software review," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 196-202, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    2. Decai Tang & Yan Zhang & Brandon J. Bethel, 2019. "An Analysis of Disparities and Driving Factors of Carbon Emissions in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(8), pages 1-13, April.
    3. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    4. Yong Bian & Zhi Yu & Xuelan Zeng & Jingchun Feng & Chao He, 2018. "Achieving China’s Long-Term Carbon Emission Abatement Targets: A Perspective from Regional Disparity," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    5. Yanbin Li & Zhen Li & Min Wu & Feng Zhang & Gejirifu De, 2018. "Regional-Level Allocation of CO 2 Emission Permits in China: Evidence from the Boltzmann Distribution Method," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    6. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    7. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    8. Jiancheng Qin & Hui Tao & Minjin Zhan & Qamar Munir & Karthikeyan Brindha & Guijin Mu, 2019. "Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    9. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    10. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
    11. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    12. Hao, Yu & Liu, Yiming & Weng, Jia-Hsi & Gao, Yixuan, 2016. "Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis," Energy, Elsevier, vol. 114(C), pages 1214-1223.
    13. Shaozhou Qi & Huarong Peng & Xiujie Tan, 2019. "The Moderating Effect of R&D Investment on Income and Carbon Emissions in China: Direct and Spatial Spillover Insights," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    14. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    15. Yu, Shiwei & Zheng, Shuhong & Li, Xia, 2018. "The achievement of the carbon emissions peak in China: The role of energy consumption structure optimization," Energy Economics, Elsevier, vol. 74(C), pages 693-707.
    16. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2021. "Analysing the relationship between CO2 emissions and GDP in China: a fractional integration and cointegration approach," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-16, December.
    17. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    18. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    19. Vikniswari Vija Kumaran & Siti Nurul Munawwarah & Mohd Khairi Ismail, 2021. "Sustainability in ASEAN: The Roles of Financial Development towards Climate Change," Asian Journal of Economics and Empirical Research, Asian Online Journal Publishing Group, vol. 8(1), pages 1-9.
    20. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.

    More about this item

    Keywords

    CO 2 emissions; ESDA; PLS-SEM; China;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2711-:d:664307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.