IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2675-d338303.html
   My bibliography  Save this article

Study on Dynamic Total Factor Carbon Emission Efficiency in China’s Urban Agglomerations

Author

Listed:
  • Fan Zhang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing 100101, China)

  • Gui Jin

    (College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Junlong Li

    (School of Economics and Management, Sanming University, Sanming 365004, China
    Research Center of Low Carbon Economy, Research Base of Humanities and Social Sciences of Fujian Institutions of Higher Learning, Sanming 365004, China)

  • Chao Wang

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Ning Xu

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

Abstract

The scale effect of urbanization on improving carbon emission efficiency and achieving low-carbon targets is an important topic in urban research. Using dynamic panel data from 64 prefecture-level cities in four typical urban agglomerations in China from 2006 to 2016, this paper constructed a stochastic frontier analysis model to empirically measure the city-level total-factor carbon emission efficiency index (TCEI) at different stages of urbanization and to identify rules governing its spatiotemporal evolution. We quantitatively analyzed the influences and functional characteristics of TCEI in the four urban agglomerations of Pearl River Delta, Beijing-Tianjin-Hebei, the Yangtze River Delta, and Chengdu-Chongqing. Results show that the TCEI at different stages of urbanization in these urban agglomerations is increasing year by year. The overall city-level TCEI was ranked as follows: Pearl River Delta > Beijing-Tianjin-Hebei > Yangtze River Delta > Chengdu-Chongqing. Improvements in the level of economic development and urbanization will help achieve low-carbon development in a given urban agglomeration. The optimization of industrial structure and improvement of ecological environment will help curb carbon emissions. This paper provides decision-making references for regional carbon emission reduction from optimizing industrial and energy consumption structures and improving energy efficiency.

Suggested Citation

  • Fan Zhang & Gui Jin & Junlong Li & Chao Wang & Ning Xu, 2020. "Study on Dynamic Total Factor Carbon Emission Efficiency in China’s Urban Agglomerations," Sustainability, MDPI, vol. 12(7), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2675-:d:338303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi Wang & Hua Wang & Li Zhang & Jun Dang, 2019. "Provincial Carbon Emissions Efficiency and Its Influencing Factors in China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    2. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    3. Zhuang Miao & Tomas Baležentis & Zhihua Tian & Shuai Shao & Yong Geng & Rui Wu, 2019. "Environmental Performance and Regulation Effect of China’s Atmospheric Pollutant Emissions: Evidence from “Three Regions and Ten Urban Agglomerations”," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 211-242, September.
    4. Subal Kumbhakar & M. Denny & M. Fuss, 2000. "Estimation and decomposition of productivity change when production is not efficient: a paneldata approach," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 312-320.
    5. Wang, Chunhua, 2007. "Decomposing energy productivity change: A distance function approach," Energy, Elsevier, vol. 32(8), pages 1326-1333.
    6. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    7. Li, Baizhan & Yao, Runming, 2009. "Urbanisation and its impact on building energy consumption and efficiency in China," Renewable Energy, Elsevier, vol. 34(9), pages 1994-1998.
    8. Tao, Feng & Zhang, Huiqin & Hu, Jun & Xia, X.H., 2017. "Dynamics of green productivity growth for major Chinese urban agglomerations," Applied Energy, Elsevier, vol. 196(C), pages 170-179.
    9. Rahman, Mohammad Mafizur & Kashem, Mohammad Abul, 2017. "Carbon emissions, energy consumption and industrial growth in Bangladesh: Empirical evidence from ARDL cointegration and Granger causality analysis," Energy Policy, Elsevier, vol. 110(C), pages 600-608.
    10. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    11. Jin, Gui & Guo, Baishu & Deng, Xiangzheng, 2020. "Is there a decoupling relationship between CO2 emission reduction and poverty alleviation in China?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    12. Ramanathan, Ramakrishnan, 2005. "An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa," Energy, Elsevier, vol. 30(15), pages 2831-2842.
    13. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    14. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    15. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    16. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    17. Jin, Gui & Chen, Kun & Wang, Pei & Guo, Baishu & Dong, Yin & Yang, Jun, 2019. "Trade-offs in land-use competition and sustainable land development in the North China Plain," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 36-46.
    18. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    19. Dong, Feng & Li, Xiaohui & Long, Ruyin & Liu, Xiaoyan, 2013. "Regional carbon emission performance in China according to a stochastic frontier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 525-530.
    20. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
    21. Sun, J. W., 2005. "The decrease of CO2 emission intensity is decarbonization at national and global levels," Energy Policy, Elsevier, vol. 33(8), pages 975-978, May.
    22. Lin, Boqiang & Wang, Xiaolei, 2014. "Exploring energy efficiency in China׳s iron and steel industry: A stochastic frontier approach," Energy Policy, Elsevier, vol. 72(C), pages 87-96.
    23. R. Ramanathan, 2002. "Combining indicators of energy consumption and CO 2 emissions: a cross-country comparison," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 17(3), pages 214-227.
    24. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    25. Feng Dong & Ruyin Long & Zhuolin Li & Yuanju Dai, 2016. "Analysis of carbon emission intensity, urbanization and energy mix: evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1375-1391, June.
    26. Guo, Xiao-Dan & Zhu, Lei & Fan, Ying & Xie, Bai-Chen, 2011. "Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA," Energy Policy, Elsevier, vol. 39(5), pages 2352-2360, May.
    27. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Wang & Qiuxia Zheng & Ao Sun & Jie Bao & Dianting Wu, 2021. "Spatio-Temporal Patterns of CO 2 Emissions and Influencing Factors in China Using ESDA and PLS-SEM," Mathematics, MDPI, vol. 9(21), pages 1-24, October.
    2. Luo, Haizhi & Wang, Chenglong & Li, Cangbai & Meng, Xiangzhao & Yang, Xiaohu & Tan, Qian, 2024. "Multi-scale carbon emission characterization and prediction based on land use and interpretable machine learning model: A case study of the Yangtze River Delta Region, China," Applied Energy, Elsevier, vol. 360(C).
    3. Da Gao & Xinlin Mo & Ruochan Xiong & Zhiliang Huang, 2022. "Tax Policy and Total Factor Carbon Emission Efficiency: Evidence from China’s VAT Reform," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    4. Yu, Ying & Dai, Yuqi & Xu, Linyu & Zheng, Hanzhong & Wu, Wenhao & Chen, Lei, 2023. "A multi-level characteristic analysis of urban agglomeration energy-related carbon emission: A case study of the Pearl River Delta," Energy, Elsevier, vol. 263(PB).
    5. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    6. Qizhen Wang & Qian Zhang, 2022. "Foreign Direct Investment and Carbon Emission Efficiency: The Role of Direct and Indirect Channels," Sustainability, MDPI, vol. 14(20), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Wang, Q.W. & Zhou, P. & Shen, N. & Wang, S.S., 2013. "Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 324-330.
    3. Guo, Xiao-Dan & Zhu, Lei & Fan, Ying & Xie, Bai-Chen, 2011. "Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA," Energy Policy, Elsevier, vol. 39(5), pages 2352-2360, May.
    4. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    5. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    6. Ying Sun & Fengqin Liu & Huaping Sun, 2022. "Does Standardization Improve Carbon Emission Efficiency as Soft Infrastructure? Evidence from China," Energies, MDPI, vol. 15(6), pages 1-17, March.
    7. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    8. Vaninsky, Alexander, 2010. "Prospective national and regional environmental performance: Boundary estimations using a combined data envelopment – stochastic frontier analysis approach," Energy, Elsevier, vol. 35(9), pages 3657-3665.
    9. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    10. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    11. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    12. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    13. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    14. Yigang Wei & Yan Li & Meiyu Wu & Yingbo Li, 2020. "Progressing sustainable development of “the Belt and Road countries”: Estimating environmental efficiency based on the Super‐slack‐based measure model," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 521-539, July.
    15. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
    16. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    17. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    18. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    19. Tsolas, Ioannis E., 2011. "Performance assessment of mining operations using nonparametric production analysis: A bootstrapping approach in DEA," Resources Policy, Elsevier, vol. 36(2), pages 159-167, June.
    20. Dong, Feng & Li, Xiaohui & Long, Ruyin & Liu, Xiaoyan, 2013. "Regional carbon emission performance in China according to a stochastic frontier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 525-530.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2675-:d:338303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.