IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2407-d644493.html
   My bibliography  Save this article

Toward Minimalistic Model of Cellular Volume Dynamics in Neurovascular Unit

Author

Listed:
  • Robert Loshkarev

    (Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia)

  • Dmitry Postnov

    (Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia)

Abstract

The neurovascular unit (NVU) concept denotes cells and their communication mechanisms that autoregulate blood supply in the brain parenchyma. Over the past two decades, it has become clear that besides its primary function, NVU is involved in many important processes associated with maintaining brain health and that altering the proportion of the extracellular space plays a vital role in this. While biologists have studied the process of cells swelling or shrinking, the consequences of the NVU’s operation are not well understood. In addition to direct quantitative modeling of cellular processes in the NVU, there is room for developing a minimalistic mathematical description, similar to how computational neuroscience operates with very simple models of neurons, which, however, capture the main features of dynamics. In this work, we have developed a minimalistic model of cell volumes regulation in the NVU. We based our model on the FitzHugh–Nagumo model with noise excitation and supplemented it with a variable extracellular space volume. We show that such a model acquires new dynamic properties in comparison with the traditional neuron model. To validate our approach, we adjusted the parameters of the minimalistic model so that its behavior fits the dynamics computed using the high-dimensional quantitative and biophysically relevant model. The results show that our model correctly describes the change in cell volume and intercellular space in the NVU.

Suggested Citation

  • Robert Loshkarev & Dmitry Postnov, 2021. "Toward Minimalistic Model of Cellular Volume Dynamics in Neurovascular Unit," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2407-:d:644493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaime de la Rocha & Brent Doiron & Eric Shea-Brown & Krešimir Josić & Alex Reyes, 2007. "Correlation between neural spike trains increases with firing rate," Nature, Nature, vol. 448(7155), pages 802-806, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.
    2. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    3. Corentin Massot & Adam D Schneider & Maurice J Chacron & Kathleen E Cullen, 2012. "The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion," PLOS Biology, Public Library of Science, vol. 10(7), pages 1-20, July.
    4. Emiliano Torre & Carlos Canova & Michael Denker & George Gerstein & Moritz Helias & Sonja Grün, 2016. "ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-34, July.
    5. Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    6. Francesco Negro & Dario Farina, 2012. "Factors Influencing the Estimates of Correlation between Motor Unit Activities in Humans," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-14, September.
    7. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    8. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    9. Geoffrey Terral & Evan Harrell & Gabriel Lepousez & Yohan Wards & Dinghuang Huang & Tiphaine Dolique & Giulio Casali & Antoine Nissant & Pierre-Marie Lledo & Guillaume Ferreira & Giovanni Marsicano & , 2024. "Endogenous cannabinoids in the piriform cortex tune olfactory perception," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Michelle F Craft & Andrea K Barreiro & Shree Hari Gautam & Woodrow L Shew & Cheng Ly, 2021. "Differences in olfactory bulb mitral cell spiking with ortho- and retronasal stimulation revealed by data-driven models," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    11. Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
    12. James Trousdale & Yu Hu & Eric Shea-Brown & Krešimir Josić, 2012. "Impact of Network Structure and Cellular Response on Spike Time Correlations," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    13. Moritz Helias & Tom Tetzlaff & Markus Diesmann, 2014. "The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-21, January.
    14. Yu Hu & Joel Zylberberg & Eric Shea-Brown, 2014. "The Sign Rule and Beyond: Boundary Effects, Flexibility, and Noise Correlations in Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-22, February.
    15. Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
    16. Moritz Helias & Moritz Deger & Stefan Rotter & Markus Diesmann, 2010. "Instantaneous Non-Linear Processing by Pulse-Coupled Threshold Units," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-10, September.
    17. Volker Pernice & Rava Azeredo da Silveira, 2018. "Interpretation of correlated neural variability from models of feed-forward and recurrent circuits," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-26, February.
    18. Andrea K Barreiro & Cheng Ly, 2017. "When do correlations increase with firing rates in recurrent networks?," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-30, April.
    19. Christian Donner & Klaus Obermayer & Hideaki Shimazaki, 2017. "Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-27, January.
    20. Stojan Jovanović & Stefan Rotter, 2016. "Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2407-:d:644493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.