IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1883-d158771.html
   My bibliography  Save this article

Internal Model Current Control of Brushless Doubly Fed Induction Machines

Author

Listed:
  • Mei Su

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Weiyu Jin

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Guanguan Zhang

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Weiyi Tang

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, DK-9220 Aalborg, Denmark)

Abstract

In the wind energy generation system, the brushless doubly-fed induction machine (BDFIM) has shown significant application potential, since it eliminates the electric brush and slip ring. However, the complicated rotor structure increases the control difficulty, especially resulting in complicated coupled terms in the current sub-system, which deteriorates the dynamic performance and reduces the system robustness. In order to address the problems caused by complex coupled terms, an internal model current control strategy is presented for the BDFIM, and an active damping term is designed for suppressing the disturbance caused by the total resistance. The proposed method simplifies the controller parameters design, and it achieves the fast-dynamic response and the good tracking performance, as well as good robustness. On the other hand, the feedforward term composed by the grid voltage is added to the internal model controller in order to suppress the disturbance when the symmetrical grid voltage sag happens. Finally, the simulation and experimental results verify the feasibility and effectiveness of the proposed method.

Suggested Citation

  • Mei Su & Weiyu Jin & Guanguan Zhang & Weiyi Tang & Frede Blaabjerg, 2018. "Internal Model Current Control of Brushless Doubly Fed Induction Machines," Energies, MDPI, vol. 11(7), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1883-:d:158771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Ji & Shenghua Huang, 2018. "Direct Flux Control for Stand-Alone Operation Brushless Doubly Fed Induction Generators Using a Resonant-Based Sliding-Mode Control Approach," Energies, MDPI, vol. 11(4), pages 1-22, April.
    2. Chaoying Xia & Xiaoxin Hou & Feng Chen, 2018. "Flux-Angle-Difference Feedback Control for the Brushless Doubly Fed Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.
    3. Ping Zheng & Qian Wu & Jing Zhao & Chengde Tong & Jingang Bai & Quanbin Zhao, 2012. "Performance Analysis and Simulation of a Novel Brushless Double Rotor Machine for Power-Split HEV Applications," Energies, MDPI, vol. 5(1), pages 1-19, January.
    4. Chaoying Xia & Xiaoxin Hou, 2016. "Study on the Static Load Capacity and Synthetic Vector Direct Torque Control of Brushless Doubly Fed Machines," Energies, MDPI, vol. 9(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenming Li & Xuefan Wang & Lezhi Ou & Xinmai Gao & Fei Xiong, 2019. "Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine," Energies, MDPI, vol. 12(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenming Li & Xuefan Wang & Lezhi Ou & Xinmai Gao & Fei Xiong, 2019. "Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine," Energies, MDPI, vol. 12(6), pages 1-14, March.
    2. Zhiwei Ruan & Chaohao Kan & Chenglong Chu & Taian Ren & Qiuming Chen, 2019. "Improvements of the Starting Performance of A Novel Brushless Doubly-fed Motor Based on the Composite Coils," Energies, MDPI, vol. 12(6), pages 1-20, March.
    3. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    4. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    5. Jianning Shi & Chaoying Xia, 2021. "Feedback Linearization and Maximum Torque per Ampere Control Methods of Cup Rotor Permanent-Magnet Doubly Fed Machine," Energies, MDPI, vol. 14(19), pages 1-21, October.
    6. Chunhua Liu & K. T. Chau, 2014. "Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine," Energies, MDPI, vol. 7(3), pages 1-16, March.
    7. Lei Xu & Mingyao Lin & Xinghe Fu & Kai Liu & Baocheng Guo, 2017. "Analytical Calculation of the Magnetic Field Distribution in a Linear and Rotary Machine with an Orthogonally Arrayed Permanent Magnet," Energies, MDPI, vol. 10(4), pages 1-18, April.
    8. Chaoying Xia & Jiaxiang Bi & Jianning Shi, 2023. "Investigation of a Cup-Rotor Permanent-Magnet Doubly Fed Machine for Extended-Range Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-23, March.
    9. Kai Ji & Shenghua Huang, 2018. "Direct Flux Control for Stand-Alone Operation Brushless Doubly Fed Induction Generators Using a Resonant-Based Sliding-Mode Control Approach," Energies, MDPI, vol. 11(4), pages 1-22, April.
    10. Chaoying Xia & Xiaoxin Hou & Feng Chen, 2018. "Flux-Angle-Difference Feedback Control for the Brushless Doubly Fed Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.
    11. Ping Zheng & Qian Wu & Jingang Bai & Chengde Tong & Zhiyi Song, 2013. "Analysis and Experiment of a Novel Brushless Double Rotor Machine for Power-Split Hybrid Electrical Vehicle Applications," Energies, MDPI, vol. 6(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1883-:d:158771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.