IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1157-d217021.html
   My bibliography  Save this article

Improvements of the Starting Performance of A Novel Brushless Doubly-fed Motor Based on the Composite Coils

Author

Listed:
  • Zhiwei Ruan

    (College of Electrical & Automatic Engineering, Hefei University of Technology, Hefei 230009, Anhui, China)

  • Chaohao Kan

    (College of Electrical & Automatic Engineering, Hefei University of Technology, Hefei 230009, Anhui, China)

  • Chenglong Chu

    (College of Electrical & Automatic Engineering, Hefei University of Technology, Hefei 230009, Anhui, China)

  • Taian Ren

    (College of Electrical & Automatic Engineering, Hefei University of Technology, Hefei 230009, Anhui, China)

  • Qiuming Chen

    (College of Electrical & Automatic Engineering, Hefei University of Technology, Hefei 230009, Anhui, China)

Abstract

Brushless doubly-fed motor (BDFM) has well applicable potentials in the speed control driving field due to its excellent speed regulation performance. However, the poor starting performance becomes a shortage that still limits the development and application of wound BDFM. To solve the problem, this paper presents a novel BDFM adopted rotor winding based on the principle of the composite coil. Both the principle of the composite coil and the designed example of the rotor winding are analyzed in detail in this content, and the stator winding designed by the change-pole method is described. The performance of the prototype was tested by simulation and experiments, both results reveal that this method can effectively improve the starting performance of BDFM, the system is simplified, and the stability of it is prompted.

Suggested Citation

  • Zhiwei Ruan & Chaohao Kan & Chenglong Chu & Taian Ren & Qiuming Chen, 2019. "Improvements of the Starting Performance of A Novel Brushless Doubly-fed Motor Based on the Composite Coils," Energies, MDPI, vol. 12(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1157-:d:217021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaoying Xia & Xiaoxin Hou & Feng Chen, 2018. "Flux-Angle-Difference Feedback Control for the Brushless Doubly Fed Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.
    2. Chaoying Xia & Xiaoxin Hou, 2016. "Study on the Static Load Capacity and Synthetic Vector Direct Torque Control of Brushless Doubly Fed Machines," Energies, MDPI, vol. 9(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenming Li & Xuefan Wang & Lezhi Ou & Xinmai Gao & Fei Xiong, 2019. "Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine," Energies, MDPI, vol. 12(6), pages 1-14, March.
    2. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    3. Mei Su & Weiyu Jin & Guanguan Zhang & Weiyi Tang & Frede Blaabjerg, 2018. "Internal Model Current Control of Brushless Doubly Fed Induction Machines," Energies, MDPI, vol. 11(7), pages 1-19, July.
    4. Jianning Shi & Chaoying Xia, 2021. "Feedback Linearization and Maximum Torque per Ampere Control Methods of Cup Rotor Permanent-Magnet Doubly Fed Machine," Energies, MDPI, vol. 14(19), pages 1-21, October.
    5. Chaoying Xia & Jiaxiang Bi & Jianning Shi, 2023. "Investigation of a Cup-Rotor Permanent-Magnet Doubly Fed Machine for Extended-Range Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-23, March.
    6. Kai Ji & Shenghua Huang, 2018. "Direct Flux Control for Stand-Alone Operation Brushless Doubly Fed Induction Generators Using a Resonant-Based Sliding-Mode Control Approach," Energies, MDPI, vol. 11(4), pages 1-22, April.
    7. Chaoying Xia & Xiaoxin Hou & Feng Chen, 2018. "Flux-Angle-Difference Feedback Control for the Brushless Doubly Fed Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1157-:d:217021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.