IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1907-d345160.html
   My bibliography  Save this article

Performance Enhancement of Direct Torque-Controlled Permanent Magnet Synchronous Motor with a Flexible Switching Table

Author

Listed:
  • Ahmed Nasr

    (Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China)

  • Chunyang Gu

    (Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China)

  • Serhiy Bozhko

    (Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
    PEMC Group, University of Nottingham, Nottingham NG7 2RD, UK)

  • Chris Gerada

    (Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
    PEMC Group, University of Nottingham, Nottingham NG7 2RD, UK)

Abstract

In this paper, a flexible switching table (FST) for direct torque control (DTC) of permanent magnet synchronous motors (PMSMs) was proposed to enhance the steady-state and dynamic performances of the drive system. First, the influence of each converter output voltage vectors on the torque and stator flux deviation rates was analyzed to assess the voltage selection strategies of the conventional STs and their impact on the DTC system’s performance. Then, a new flexible ST was proposed which uses a simple algorithm to adaptively select the appropriate voltage vector for two of its states according to the system operating condition. The effectiveness and feasibility of the proposed FST were verified through a comparative evaluation with the conventional STs using experimental results obtained from a 0.75 kW PMSM drive system.

Suggested Citation

  • Ahmed Nasr & Chunyang Gu & Serhiy Bozhko & Chris Gerada, 2020. "Performance Enhancement of Direct Torque-Controlled Permanent Magnet Synchronous Motor with a Flexible Switching Table," Energies, MDPI, vol. 13(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1907-:d:345160
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1907/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    2. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    3. Yu-Chen Lin & Valentina Emilia Balas & Ji-Fan Yang & Yu-Heng Chang, 2020. "Adaptive Takagi–Sugeno Fuzzy Model Predictive Control for Permanent Magnet Synchronous Generator-Based Hydrokinetic Turbine Systems," Energies, MDPI, vol. 13(20), pages 1-18, October.
    4. Zehao Lyu & Xiang Wu & Jie Gao & Guojun Tan, 2021. "An Improved Finite-Control-Set Model Predictive Current Control for IPMSM under Model Parameter Mismatches," Energies, MDPI, vol. 14(19), pages 1-13, October.
    5. Chunyan Li & Fei Guo & Baoquan Kou & Tao Meng, 2021. "Research on the Non-Magnetic Conductor of a PMSM Based on the Principle of Variable Exciting Magnetic Reluctance," Energies, MDPI, vol. 14(2), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1907-:d:345160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.