IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6550-d460653.html
   My bibliography  Save this article

A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties

Author

Listed:
  • Xusheng Shen

    (Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China)

  • Tao Xie

    (Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China)

  • Tianzhen Wang

    (Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China)

Abstract

Marine current energy is attracting more and more attention in the world as a reliable and highly predictable energy resource. However, conventional proportional integral (PI) control will be sensitive to the numerous challenges that exist in a marine current turbine system (MCTs) such as marine current disturbance, torque disturbance and other uncertain parameters. This paper proposes a fuzzy adaptive backstepping control (F-A-BC) approach for a marine current turbine system. The proposed F-A-BC strategy consisted of two parts. First, an adaptive backstepping control approach with the compensation of disturbance and uncertainty was designed to improve anti-interference of the MCT so that the maximum power point tracking (MPPT) was realized. Then, a fuzzy logic control approach was combined to adjust parameters of an adaptive backstepping control approach in real time. The effectiveness of the proposed controller was verified by the simulation of a direct-drive marine current turbine system. The simulation results showed that the F-A-BC has better anti-interference ability and faster convergence compared to the adaptive backstepping control, sliding mode control and fuzzy PI control strategies under disturbances. The error percentage of rotor speed could be reduced by 3.5% under swell effect compared to the conventional controller. Moreover, the robustness of the F-A-BC method under uncertainties was tested and analyzed. The simulation results also indicated that the proposed approach could slightly improve the power extraction capability of the MCTs under variable marine current speed.

Suggested Citation

  • Xusheng Shen & Tao Xie & Tianzhen Wang, 2020. "A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties," Energies, MDPI, vol. 13(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6550-:d:460653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6550/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2014. "Marine current energy resource assessment and design of a marine current turbine for Fiji," Renewable Energy, Elsevier, vol. 65(C), pages 14-22.
    2. Kubiat Umoh & Mark Lemon, 2020. "Drivers for and Barriers to the Take up of Floating Offshore Wind Technology: A Comparison of Scotland and South Africa," Energies, MDPI, vol. 13(21), pages 1-21, October.
    3. Yanfeng Ma & Jia Liu & Haihang Liu & Shuqiang Zhao, 2018. "Active-Reactive Additional Damping Control of a Doubly-Fed Induction Generator Based on Active Disturbance Rejection Control," Energies, MDPI, vol. 11(5), pages 1-18, May.
    4. Johan Forslund & Anders Goude & Karin Thomas, 2018. "Validation of a Coupled Electrical and Hydrodynamic Simulation Model for a Vertical Axis Marine Current Energy Converter," Energies, MDPI, vol. 11(11), pages 1-13, November.
    5. Yang, Bo & Yu, Tao & Shu, Hongchun & Zhang, Yuming & Chen, Jian & Sang, Yiyan & Jiang, Lin, 2018. "Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine," Renewable Energy, Elsevier, vol. 119(C), pages 577-589.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    2. Alimuddin Alimuddin & Ria Arafiyah & Irma Saraswati & Rocky Alfanz & Partogi Hasudungan & Taufik Taufik, 2021. "Development and Performance Study of Temperature and Humidity Regulator in Baby Incubator Using Fuzzy-PID Hybrid Controller," Energies, MDPI, vol. 14(20), pages 1-21, October.
    3. Btissam Majout & Houda El Alami & Hassna Salime & Nada Zine Laabidine & Youness El Mourabit & Saad Motahhir & Manale Bouderbala & Mohammed Karim & Badre Bossoufi, 2022. "A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG," Energies, MDPI, vol. 15(17), pages 1-41, August.
    4. Sylvain S. Guillou & Eric Bibeau, 2023. "Tidal Turbines," Energies, MDPI, vol. 16(7), pages 1-5, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youcef Belkhier & Abdelyazid Achour & Rabindra Nath Shaw & Nasim Ullah & Md. Shahariar Chowdhury & Kuaanan Techato, 2021. "Energy-Based Combined Nonlinear Observer and Voltage Controller for a PMSG Using Fuzzy Supervisor High Order Sliding Mode in a Marine Current Power System," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    2. Belkhier, Youcef & Achour, Abdelyazid & Ullah, Nasim & Shaw, Rabindra Nath & Chowdhury, Shahariar & Techato, Kuaanan, 2022. "Energy-based fuzzy supervisory non integer control for performance improvement of PMSG-Based marine energy system under swell effect and parameter uncertainties," Renewable Energy, Elsevier, vol. 186(C), pages 457-468.
    3. Villalón, V. & Watts, D. & Cienfuegos, R., 2019. "Assessment of the power potential extraction in the Chilean Chacao channel," Renewable Energy, Elsevier, vol. 131(C), pages 585-596.
    4. Iben Ringvej Dahl & Bård Wathne Tveiten & Emily Cowan, 2022. "The Case for Policy in Developing Offshore Wind: Lessons from Norway," Energies, MDPI, vol. 15(4), pages 1-14, February.
    5. Hongchun Shu & Na An & Bo Yang & Yue Dai & Yu Guo, 2020. "Single Pole-to-Ground Fault Analysis of MMC-HVDC Transmission Lines Based on Capacitive Fuzzy Identification Algorithm," Energies, MDPI, vol. 13(2), pages 1-18, January.
    6. Hongchun Shu & Yiming Han & Ran Huang & Yutao Tang & Pulin Cao & Bo Yang & Yu Zhang, 2020. "Fault Model and Travelling Wave Matching Based Single Terminal Fault Location Algorithm for T-Connection Transmission Line: A Yunnan Power Grid Study," Energies, MDPI, vol. 13(6), pages 1-22, March.
    7. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    8. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    9. Akhyani, Mahmood & Chegini, Vahid & Aliakbari Bidokhti, Abbasali, 2015. "An appraisal of the power density of current profile in the Persian Gulf and the Gulf of Oman using numerical simulation," Renewable Energy, Elsevier, vol. 74(C), pages 307-317.
    10. Rohit Agrawal & Abhijit Majumdar & Kirty Majumdar & Rakesh D. Raut & Balkrishna E. Narkhede, 2022. "Attaining sustainable development goals (SDGs) through supply chain practices and business strategies: A systematic review with bibliometric and network analyses," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3669-3687, November.
    11. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    12. Iurii Prokazov & Vladimir Gorbanyov & Vadim Samusenkov & Irina Razinkina & Monika Chłąd, 2021. "Assessing the Flexibility of Renewable Energy Multinational Corporations," Energies, MDPI, vol. 14(13), pages 1-19, June.
    13. Yang, Bo & Wu, Shaocong & Li, Qiang & Yan, Yingjie & Li, Danyang & Luo, Enbo & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Shu, Hongchun & Li, Zilin & Wang, Jingbo, 2023. "Jellyfish search algorithm based optimal thermoelectric generation array reconfiguration under non-uniform temperature distribution condition," Renewable Energy, Elsevier, vol. 204(C), pages 197-217.
    14. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    15. Huazhen Cao & Chong Gao & Xuan He & Yang Li & Tao Yu, 2020. "Multi-Agent Cooperation Based Reduced-Dimension Q(λ) Learning for Optimal Carbon-Energy Combined-Flow," Energies, MDPI, vol. 13(18), pages 1-22, September.
    16. Takhi, Hocine & Kemih, Karim & Moysis, Lazaros & Volos, Christos, 2021. "Passivity based sliding mode control and synchronization of a perturbed uncertain unified chaotic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 150-169.
    17. Sofiane Bououden & Fouad Allouani & Abdelaziz Abboudi & Mohammed Chadli & Ilyes Boulkaibet & Zaher Al Barakeh & Bilel Neji & Raymond Ghandour, 2023. "Observer-Based Robust Fault Predictive Control for Wind Turbine Time-Delay Systems with Sensor and Actuator Faults," Energies, MDPI, vol. 16(2), pages 1-21, January.
    18. Chiri, Helios & Cid, Alba & Abascal, Ana J. & García-Alba, Javier & García, Andrés & Iturrioz, Arantza, 2019. "A high-resolution hindcast of sea level and 3D currents for marine renewable energy applications: A case study in the Bay of Biscay," Renewable Energy, Elsevier, vol. 134(C), pages 783-795.
    19. Charalampos Baniotopoulos, 2022. "Advances in Floating Wind Energy Converters," Energies, MDPI, vol. 15(15), pages 1-3, August.
    20. Xu, Tianbo & Zhu, Chunxia & Qi, Wenhai & Cheng, Jun & Shi, Kaibo & Sun, Liangliang, 2022. "Passive analysis and finite-time anti-disturbance control for semi-Markovian jump fuzzy systems with saturation and uncertainty," Applied Mathematics and Computation, Elsevier, vol. 424(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6550-:d:460653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.