IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i11d10.1140_epjb_s10051-022-00457-z.html
   My bibliography  Save this article

Strain-stream model of epidemic spread in application to COVID-19

Author

Listed:
  • S. A. Trigger

    (Joint Institute for High Temperatures, Russian Academy of Sciences
    Humboldt-Universität zu Berlin)

  • A. M. Ignatov

    (Prokhorov General Physics Institute of the Russian Academy of Sciences)

Abstract

The recently developed model of the epidemic spread of two virus strains in a closed population is generalized to the situation typical for the couple of strains delta and omicron, when there is a high probability of omicron infection soon enough after recovering from delta infection. This model can be considered as a kind of combination of SIR and SIS models for the case of competition of two strains of the same virus with different contagiousness in a population. The obtained equations and results can be directly implemented for practical calculations of the replacement of strains of the SARS-CoV-2 virus. A comparison between the estimated replacement time and the corresponding statistics shows reasonable agreement. Graphic abstract

Suggested Citation

  • S. A. Trigger & A. M. Ignatov, 2022. "Strain-stream model of epidemic spread in application to COVID-19," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-8, November.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:11:d:10.1140_epjb_s10051-022-00457-z
    DOI: 10.1140/epjb/s10051-022-00457-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-022-00457-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-022-00457-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao-Jie Li & Xiang Li, 2020. "Vaccinating SIS epidemics under evolving perception in heterogeneous networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(10), pages 1-7, October.
    2. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    3. Juliet Bedford & Jeremy Farrar & Chikwe Ihekweazu & Gagandeep Kang & Marion Koopmans & John Nkengasong, 2019. "A new twenty-first century science for effective epidemic response," Nature, Nature, vol. 575(7781), pages 130-136, November.
    4. Simón A. Rella & Yuliya A. Kulikova & Emmanouil T. Dermitzakis & Fyodor A. Kondrashov, 2021. "Rates of SARS-COV-2 transmission and vaccination impact the fate of vaccine-resistant strains," Working Papers 2129, Banco de España.
    5. Khadija Khan & Farina Karim & Sandile Cele & Kajal Reedoy & James Emmanuel San & Gila Lustig & Houriiyah Tegally & Yuval Rosenberg & Mallory Bernstein & Zesuliwe Jule & Yashica Ganga & Nokuthula Ngcob, 2022. "Omicron infection enhances Delta antibody immunity in vaccinated persons," Nature, Nature, vol. 607(7918), pages 356-359, July.
    6. Postnikov, Eugene B., 2020. "Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions?," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shnip, A.I. & Trigger, S.A., 2024. "On the repeated epidemic waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shnip, A.I. & Trigger, S.A., 2024. "On the repeated epidemic waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    6. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    7. Abolfazl Mollalo & Alireza Mohammadi & Sara Mavaddati & Behzad Kiani, 2021. "Spatial Analysis of COVID-19 Vaccination: A Scoping Review," IJERPH, MDPI, vol. 18(22), pages 1-14, November.
    8. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    9. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    10. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    11. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    12. Miguel Navascués & Costantino Budroni & Yelena Guryanova, 2021. "Disease control as an optimization problem," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-32, September.
    13. Frank Daumann & Florian Follert & Werner Gleißner & Endre Kamarás & Chantal Naumann, 2021. "Political Decision Making in the COVID-19 Pandemic: The Case of Germany from the Perspective of Risk Management," IJERPH, MDPI, vol. 19(1), pages 1-23, December.
    14. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    15. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    16. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    17. Saba Wajeeh & Abhishek Lal & Naseer Ahmed & Md. Ibrahim Khalil & Afsheen Maqsood & Akram Mojidea M Alshammari & Abdulelah Zaid Alshammari & Meshari Musallam Mohammed Alsharari & Abdulelah Hamdan Alrus, 2021. "Operational Implications and Risk Assessment of COVID-19 in Dental Practices," IJERPH, MDPI, vol. 18(22), pages 1-13, November.
    18. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    19. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    20. Sterck, Olivier, 2016. "Natural resources and the spread of HIV/AIDS: Curse or blessing?," Social Science & Medicine, Elsevier, vol. 150(C), pages 271-278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:11:d:10.1140_epjb_s10051-022-00457-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.