IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i15p1783-d603161.html
   My bibliography  Save this article

Predator–Prey Models: A Review of Some Recent Advances

Author

Listed:
  • Érika Diz-Pita

    (Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain)

  • M. Victoria Otero-Espinar

    (Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain)

Abstract

In recent years, predator–prey systems have increased their applications and have given rise to systems which represent more accurately different biological issues that appear in the context of interacting species. Our aim in this paper is to give a state-of-the-art review of recent predator–prey models which include some interesting characteristics such as Allee effect, fear effect, cannibalism, and immigration. We compare the qualitative results obtained for each of them, particularly regarding the equilibria, local and global stability, and the existence of limit cycles.

Suggested Citation

  • Érika Diz-Pita & M. Victoria Otero-Espinar, 2021. "Predator–Prey Models: A Review of Some Recent Advances," Mathematics, MDPI, vol. 9(15), pages 1-34, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1783-:d:603161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/15/1783/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/15/1783/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo González-Olivares & Javier Cabrera-Villegas & Fernando Córdova-Lepe & Alejandro Rojas-Palma, 2019. "Competition among Predators and Allee Effect on Prey, Their Influence on a Gause-Type Predation Model," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-19, March.
    2. Merdan, H. & Duman, O., 2009. "On the stability analysis of a general discrete-time population model involving predation and Allee effects," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1169-1175.
    3. Duman, O. & Merdan, H., 2009. "Stability analysis of continuous population model involving predation and Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1218-1222.
    4. Merdan, H. & Duman, O. & Akın, Ö. & Çelik, C., 2009. "Allee effects on population dynamics in continuous (overlapping) case," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1994-2001.
    5. Zhang, Huisen & Cai, Yongli & Fu, Shengmao & Wang, Weiming, 2019. "Impact of the fear effect in a prey-predator model incorporating a prey refuge," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 328-337.
    6. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    7. Qi-Ming Zhang & Feng Li & Yulin Zhao, 2014. "Limit Cycles in a Cubic Kolmogorov System with Harvest and Two Positive Equilibrium Points," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, July.
    8. Çelik, C. & Merdan, H. & Duman, O. & Akın, Ö., 2008. "Allee effects on population dynamics with delay," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 65-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zainab Saeed Abbas & Raid Kamel Naji, 2022. "Modeling and Analysis of the Influence of Fear on a Harvested Food Web System," Mathematics, MDPI, vol. 10(18), pages 1-37, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gökçe, Aytül, 2022. "A dynamic interplay between Allee effect and time delay in a mathematical model with weakening memory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Duman, O. & Merdan, H., 2009. "Stability analysis of continuous population model involving predation and Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1218-1222.
    3. Dhiman, Aman & Poria, Swarup, 2018. "Allee effect induced diversity in evolutionary dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 32-38.
    4. Merdan, H. & Duman, O., 2009. "On the stability analysis of a general discrete-time population model involving predation and Allee effects," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1169-1175.
    5. Jialin Chen & Xiaqing He & Fengde Chen, 2021. "The Influence of Fear Effect to a Discrete-Time Predator-Prey System with Predator Has Other Food Resource," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    6. Zainab Saeed Abbas & Raid Kamel Naji, 2022. "Modeling and Analysis of the Influence of Fear on a Harvested Food Web System," Mathematics, MDPI, vol. 10(18), pages 1-37, September.
    7. Hua Liu & Yong Ye & Yumei Wei & Weiyuan Ma & Ming Ma & Kai Zhang, 2019. "Pattern Formation in a Reaction-Diffusion Predator-Prey Model with Weak Allee Effect and Delay," Complexity, Hindawi, vol. 2019, pages 1-14, November.
    8. Hiba Abdullah Ibrahim & Raid Kamel Naji, 2023. "The Impact of Fear on a Harvested Prey–Predator System with Disease in a Prey," Mathematics, MDPI, vol. 11(13), pages 1-28, June.
    9. Zhang, Baoxiang & Cai, Yongli & Wang, Bingxian & Wang, Weiming, 2019. "Pattern formation in a reaction–diffusion parasite–host model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 732-740.
    10. Balcı, Ercan, 2023. "Predation fear and its carry-over effect in a fractional order prey–predator model with prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Xiaoran Wang & Huimei Liu & Wencai Zhao, 2024. "A Predator–Prey System with a Modified Leslie–Gower and Prey Stage Structure Scheme in Deterministic and Stochastic Environments," Mathematics, MDPI, vol. 12(15), pages 1-26, July.
    12. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Arjun Hasibuan & Asep Kuswandi Supriatna & Endang Rusyaman & Md. Haider Ali Biswas, 2023. "Predator–Prey Model Considering Implicit Marine Reserved Area and Linear Function of Critical Biomass Level," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    14. Das, Amartya & Samanta, G.P., 2020. "A prey–predator model with refuge for prey and additional food for predator in a fluctuating environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    15. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    16. Chen Zhang & Xianyi Li, 2023. "Dynamics of a Discrete Leslie–Gower Model with Harvesting and Holling-II Functional Response," Mathematics, MDPI, vol. 11(15), pages 1-19, July.
    17. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution of a stochastic cholera model between communities linked by migration," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    18. Han, Bingtao & Jiang, Daqing, 2022. "Stationary distribution, extinction and density function of a stochastic prey-predator system with general anti-predator behavior and fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Guangye Chen & Zhidong Teng & Zengyun Hu, 2011. "Analysis of stability for a discrete ratio-dependent predator-prey system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 42(1), pages 1-26, February.
    20. Das, Bijoy Kumar & Sahoo, Debgopal & Samanta, G.P., 2022. "Impact of fear in a delay-induced predator–prey system with intraspecific competition within predator species," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 134-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1783-:d:603161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.